Comparative Evaluation of Deep Learning Models for Multi-domain Medical Image Classification

### Nazia Tasnim Subhrangshu Bit

**Boston University** 

Apr 25, 2024

1

## **Problem Formulation**



- **Performance**: How do *statistical methods*, *Transformers*, *zero-shot learning strategies*, and *low-rank adaptation* techniques compare in terms of accuracy and robustness across different medical imaging datasets?
- **Generalization**: To what extent can existing state-of-the-art methods be leveraged to perform inference in unseen settings specifically in the medical domain?
- **Insights**: What meaningful observations can be made from the outcome?

Benchmarking MedMNIST

# **Model Families**



- CNN Family
  - ResNet 18
  - ResNet 50
- Transformer Family
  - Vision Transformer
  - SWIN
- Vision-Language Models
  - Zero-shot CLIP
  - LoRA fine tuned CLIP



Table 2. Hyperparameter configuration used for our experiments



| Model Family | Hyperparameter | Value  |
|--------------|----------------|--------|
| CNN          | Epoch          | 100    |
|              | Learning Rate  | 0.001  |
|              | Patience       | 10     |
|              | Batch Size     | 256    |
| Transformers | Epoch          | 100    |
|              | Learning Rate  | 0.001  |
|              | Patience       | 10     |
|              | Batch Size     | 256    |
| VLM          | Epoch          | 10     |
|              | Learning Rate  | 0.0000 |
|              | Batch Size     | 128    |

Table 3. Model parameters

| Model      | Params |  |
|------------|--------|--|
| Resenet-18 | 11M    |  |
| Resnet-50  | 24M    |  |
| ViT-bas    | 86M    |  |
| SWIN       | 3B     |  |
| CLIP       | 151M   |  |
| LoRA CLIP  | 157M   |  |



## Performance

#### Table 4. Performance on PathMNIST

| Model          | Split | AUC  | ACC  |
|----------------|-------|------|------|
| auto-sklearn   | Train | 0.99 | 0.90 |
|                | Val   | 0.94 | 0.71 |
|                | Test  | 0.95 | 0.73 |
| Resnet-18      | Train | 0.99 | 0.97 |
|                | Val   | 0.99 | 0.96 |
|                | Test  | 0.97 | 0.87 |
| Resnet-50      | Train | 0.99 | 0.99 |
|                | Val   | 0.99 | 0.98 |
|                | Test  | 0.98 | 0.90 |
| ViT            | Train | 0.99 | 0.91 |
|                | Val   | 0.99 | 0.91 |
|                | Test  | 0.97 | 0.86 |
| SWIN           | Train | 0.99 | 0.93 |
|                | Val   | 0.99 | 0.93 |
|                | Test  | 0.98 | 0.87 |
| Zero-shot CLIP | Train | 0.50 | 0.14 |
|                | Val   | 0.50 | 0.13 |
|                | Test  | 0.67 | 0.23 |
| LoRA CLIP      | Train | 0.99 | 0.96 |
|                | Val   | 0.99 | 0.97 |
|                | Test  | 0.99 | 0.84 |

Table 5. Performance on OctMNIST

| Model          | Split | AUC  | ACC  |
|----------------|-------|------|------|
| auto-sklearn   | Train | 0.98 | 0.96 |
|                | Val   | 0.95 | 0.88 |
|                | Test  | 0.90 | 0.62 |
| Resnet-18      | Train | 0.99 | 0.98 |
|                | Val   | 0.97 | 0.92 |
|                | Test  | 0.94 | 0.68 |
| Resnet-50      | Train | 0.99 | 0.94 |
|                | Val   | 0.97 | 0.92 |
|                | Test  | 0.95 | 0.71 |
| ViT            | Train | 0.88 | 0.73 |
|                | Val   | 0.87 | 0.71 |
|                | Test  | 0.83 | 0.71 |
| SWIN           | Train | 0.85 | 0.74 |
|                | Val   | 0.85 | 0.74 |
|                | Test  | 0.80 | 0.45 |
| Zero-shot CLIP | Train | 0.50 | 0.12 |
|                | Val   | 0.50 | 0.12 |
|                | Test  | 0.45 | 0.23 |
| LoRA CLIP      | Train | 0.99 | 0.91 |
|                | Val   | 0.99 | 0.91 |
|                | Test  | 0.98 | 0.90 |

Table 6. Performance on ChestMNIST

| Model        | Split | AUC  | ACC  |
|--------------|-------|------|------|
| auto-sklearn | Train | 0.73 | 0.82 |
|              | Val   | 0.67 | 0.82 |
|              | Test  | 0.65 | 0.82 |
| Resnet-18    | Train | 0.99 | 0.98 |
|              | Val   | 0.97 | 0.92 |
|              | Test  | 0.94 | 0.68 |
| Resnet-50    | Train | 0.99 | 0.94 |
|              | Val   | 0.97 | 0.92 |
|              | Test  | 0.95 | 0.71 |
| ViT          | Train | 0.71 | 0.94 |
|              | Val   | 0.69 | 0.94 |
|              | Test  | 0.69 | 0.94 |
| SWIN         | Train | 0.69 | 0.94 |
|              | Val   | 0.68 | 0.94 |
|              | Test  | 0.68 | 0.94 |

- Models generally performed well in the PathMNIST dataset, and struggled the most multi-label ChestMNIST dataset.
- ResNets had a consistent good AUC score across all three datasets, while showing signs of overfitting during classification.
- VLM models perform very well in all settings, if they are fine-tuned. However, they can't handle multi-labeled dataset well.

**Boston University** 

Benchmarking MedMNIST

## Remarks

- Analyze the impact of domain-specific and general backbone weight initialization
- Include more SOTA architectures, and ensembling techniques
- Extend dataset modalities, and experiment on 3D medical images.

## Data Distribution



- Data imbalance in OCTMNIST.
- Heavy imbalance in multi-label classes in ChestMNIST.

## **Problem Formulation**



- **Performance**: How do *statistical methods*, *Transformers*, *zero-shot learning strategies*, and *low-rank adaptation* techniques compare in terms of accuracy and robustness across different medical imaging datasets?
- **Generalization**: To what extent can existing state-of-the-art methods be leveraged to perform inference in unseen settings specifically in the medical domain?
- **Insights**: What meaningful observations can be made from the outcome?

Benchmarking MedMNIST