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1 INTRODUCTION

In the realm of medical imaging, accurate analysis and interpretation play an important role in facilitating
early diagnosis, treatment planning, and monitoring disease progression. With the advent of deep learning
methodologies, there has been significant advancement in the field of medical image analysis. The state-of-the-art
approaches have demonstrated enormous promise in extracting valuable information from complex datasets.
However, a significant number of these approaches have shown great performance on natural imaging datasets.
Given the inherent complexity of biomedicine, numerous bioimaging modalities are designed for specific purposes.
As a result, a large amount of engineering effort has gone into tuning deep-learning models for specific tasks.

In this study, we aim to provide a comprehensive benchmarking analysis of various statistical and deep-learning
methods. By evaluating the performance of these techniques across multiple datasets, we seek to identify the
most effective approaches for medical image classification tasks. Statistical methods have long been employed in
medical image analysis, offering robust and interpretable solutions for tasks such as segmentation, classification,
and feature extraction. However, with the increasing complexity of medical imaging data, there is a growing
need for more sophisticated and data-driven approaches. Transformers, which have revolutionized natural
language processing, have recently shown promising results in computer vision tasks, including medical image
analysis. These models leverage self-attention mechanisms to capture long-range dependencies and learn rich
representations from data. Zero-shot learning strategies, on the other hand, offer a unique advantage by enabling
models to generalize to unseen classes or tasks without requiring additional training data. This capability is
particularly valuable in the medical domain, where data scarcity and privacy concerns often pose challenges for
traditional supervised learning approaches.

By benchmarking these diverse techniques on medical image datasets, this report aims to provide valuable
insights for researchers, clinicians, and practitioners working in the field of medical imaging. The findings will
not only highlight the current state-of-the-art methods but also identify potential areas for further research and
development.

Through rigorous experimentation, we seek to address two key questions:

e Performance: How do statistical methods, Transformers, zero-shot learning strategies, few-shot fine-
tuning, and low-rank adaptation techniques compare in terms of accuracy and robustness across different
medical imaging datasets?

o Generalization: To what extent can existing state-of-the-art methods be leveraged to perform inference
in unseen settings specifically in the medical domain?

o Insights: What meaningful observations can be made from the outcome?

Through a systematic exploration of these methodologies, this report aims to provide insights into the diverse
landscape of benchmarking strategies for medical image datasets, offering valuable guidance for researchers,
clinicians, and healthcare practitioners alike in navigating the complexities of modern diagnostic paradigms.

In the subsequent sections, we will investigate the details of the datasets, methodologies, and evaluation
metrics employed in this benchmarking study. The results and analysis will be presented, then the implications
and future directions for medical image analysis will be discussed.
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2 RELATED WORKS

The MedMNIST dataset has been widely used as a benchmark for eavluating various machine learning models
and techniques in the field of medical image analysis. The original MedMNIST dataset was introduced by [15]
presenting 12 2D medical image classification datasets, covering various modalities such as X-rays, CT scans,
and OCT images. The authors benchmarked several standard baseline models including neural networks and
AutoML tools. The dataset collection was further revised by [16] extending the 12 2D data collections with higher
resolution images and further including 6 3D image classification tasks. They further evaluated benchmark
models including 3D neural networks and multiple AutoML methods such as the auto-sklearn [5] module as a
representative of open-source AutoML tools for statistical machine learning.

Numerous studies have utilized MedMNIST for benchmarking and evaluating novel deep learning architectures
for medical imaging tasks. For instance, [17] propose a novel capsule network based on self-attention in which
they replace the traditional convolutional operation with an octave convolution and evaluate the results on
MedMNIST. The dataset being an amalgam of real world data from multiple sources has inherent heterogeneity.
[3] evaluated various federated learning techniques such as FedAvg and FedCurv algorithms on this dataset
under various non-IID data settings. In addition to classification tasks, MedMNIST has been employed for other
tasks such as ordinal regression, pre-training and multi-label classification.

Transformer [12] based architectures, initially developed for sequence-to-sequence classification tasks in
natural language, have recently shown remarkable performance in computer vision tasks, including image
classification and object detection. Vision Transformers (ViT) [4] and its variants such as Swin Trasformer [7]
have shown enormous promise in different imaging tasks over various imaging modalities including X-rays,
mammograms, and histopathology slides. However, to the best of our knowledge there is limited research
specifically benchmarking ViT on the MedMNIST dataset. Existing studies have primarily focused on applying
convolutional neural networks (CNNs) and traditional machine learning algorithms to individual subsets of the
MedMNIST dataset. Therefore, there is a need for comprehensive benchmarking efforts to assess the performance
of Transformer models across different medical imaging tasks represented in the MedMNIST dataset.

Multimodal models, such as Contrastive Language-Image Pre-training (CLIP) [10], have gained attention
for their ability to learn joint representations of text and images. CLIP, in particular, has shown remarkable
performance across a wide range of vision tasks, including image classification and zero shot learning. In the
context of medical imaging, the use of CLIP for benchmarking presents an intriguing avenue for research.
By leveraging CLIP’s ability to understand semantic similarities between images and text, researchers can
potentially enhance medical image analysis tasks, such as disease diagnosis and anomaly detection. Previous
studies have approached the problem through fine-grained annotations such as bounding boxes [8, 11] and
segmentation masks [9]. However, collecting fine-grained annotations is non-trivial and thus hard to scale up.
Thereby, researchers have geared towards efficient utilization of existing large models such as CLIP mainly in
two broad areas: (1) effective refinement of pre-training CLIP vision and text encoder in a medical context and
(2) efficient utilization of the encoder networks for fine tuned downstream tasks. [6] learned both the global
and local image-text representations by contrasting attention-weighted image regions with words in the paired
reports on multi-scale Chest X-ray images. They evaluate the performance on multiple tasks such as classification,
segmentation, zero-shot classification etc. [14] employ inter-report semantical correlation as the soft optimization
target for the alignment between image and text. Text data augmentation is an effective approach to improve
training effectiveness. Even when optimized solely using global alignment, [2] demonstrates remarkable phrase
grounding performance in comparison to methods utilizing multi-scale contrast. However, the application of
CLIP to medical imaging benchmarking, especially on datasets like MedMNIST, remains an area for exploration
and experimentation.
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3 METHODOLOGY

In this section, we briefly discuss about the dataset we have chosen, how we selected our benchmarking models
and the experimental setup.

3.1 Dataset

For our exploration, we have chosen datasets that cover three distinct medical imaging modalities: pathological
microscopy (PathMNIST), chest X-ray (ChestMNIST), and retinal optical coherence tomography (OctMNIST).
The data distribution and split size of each dataset are provided in Table 1 . In the table MC refers to Multiclass
labels, and ML refers to multi-label multiclass dataset. Each dataset focuses on different anatomical structures
and diagnostic tasks. PathMNIST deals with the classification of tissue types and pathological conditions at the
cellular level, ChestMNIST involves the identification of thoracic abnormalities, and OctMNIST focuses on the
diagnosis of retinal diseases. This diversity in anatomical structures and diagnostic tasks enables us to evaluate
the models’ ability to handle a variety of medical image analysis challenges, ranging from fine-grained tissue
classification to the detection of organ-level abnormalities. In addition, each dataset presents challenges of its
own:

o From the primary visualization of the PathMNIST data, we observed that the RGB distribution of the
different classes are not very different from each other. The images corresponding to the classes adipose and
background have similar distribution due to the smooth nature of the pixel values. However, the intensities
vary significantly which could be an important feature for distinguishing. In contrast, the distribution
and the intensities of the other classes are not very different (refer to more details in the Appendix). This
demonstrates that the classification of this type is nothing trivial. On top of it, the presence of artifacts, such
as staining variations and tissue folding, can introduce noise and further complicate tissue classification.

o Chest X-rays have a relatively low contrast compared to other medical imaging modalities, making it
challenging to identify subtle abnormalities. Again, the overlapping structures in the thoracic region, such
as ribs, heart, and lungs, can obscure the visibility of abnormalities. Additionally, variability in patient
positioning and image acquisition techniques can introduce variations in the appearance of anatomical
structures.

e OCT images have a distinct appearance compared to other medical imaging modalities, with a high level of
detail and depth information. However, retinal structures, such as layers and blood vessels, have intricate
patterns that can be difficult to analyze accurately. Pathological changes in the retina may often be subtle
and localized, requiring precise segmentation and identification.

In short, choosing these three datasets can sufficiently help us in understanding the strengths and limitations
of different model architectures in handling the unique challenges posed by each domain, as well as their
generalization capacity.

Table 1. Dataset descriptions and split information

Name Modality Classes | Samples | Splits

PathMNIST | Colorectal cancer histology slides MC (9) | 107,180 | 89,996 /10,004 / 7,180
OctMNIST Optical coherence tomography (OCT) images | MC (4) | 109,309 | 97,477 / 10,832/ 1,000
ChestMNIST | Frontal-view X-Ray images ML (14) | 112,120 | 78,468 / 11,219 / 22,433
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3.2 Model Selection

To evaluate the performance of popular classification models on images from multi-domain medical images, we
emphasized on selecting a diverse set of architectures that have demonstrated strong performance in various
computer vision tasks. We start from ordinary classical models, then experimented on CNN-based architectures.
We gradually moved on to more sophisticated transformer models, and included zero-shot + fine-tuning experi-
ments utilizing currently popular generative model backbones. The parameter counts of the architectures are
provided in Table 3.

Statistical Models: We used Auto-sklearn as a representative of traditional machine learning models, such as
support vector machines (SVM), random forests, and gradient boosting. This framework automatically searches
for the best combination of data preprocessing steps, feature selection techniques, and model hyperparameters to
optimize performance on a given dataset.

CNN Family: ResNet architectures belong to the Convolutional Neural Network (CNN) family, the dominant
approach for image classification tasks in recent years. CNNs are designed to learn hierarchical representations
of images by applying convolutional filters and pooling operations. ResNet introduced the concept of residual
connections, which allow for the training of deeper networks while mitigating the vanishing gradient problem.

Transformer Family: The Vision Transformer (ViT) and the SWIN Transformer, belong to the Transformer
family, which originated from natural language processing tasks. Transformers rely on self-attention mechanisms
to capture long-range dependencies and global context in sequences. ViT adapts this architecture to image
classification by treating an image as a sequence of patches and applying self-attention to learn relationships
between these patches. On the other hands, SWIN is a variant of the Transformer that introduces a hierarchical
design with shifted windows. This allows them to handle the multi-scale nature of medical images and capture
fine-grained details.

Zero-shot Approach: Zero-shot refers to the ability of large models to infer about classes or categories
that were not present during the training of the model. The approach leverages auxiliary information acquired
during the training process to bridge unobserved classes without requiring additional training data. Zero-shot
classification has numerous applications, including image classification, object detection, action recognition, and
natural language processing tasks. The Contrastive Language-Image Pre-training (CLIP) model developed by
OpenAl is a prominent example of a zero-shot classification model for images. CLIP is trained on a large dataset
of image-text pairs, learning to associate visual and textual representations. During inference, CLIP can classify
an image by comparing its visual representation to the text representations of different class labels, without
needing explicit training examples for those classes.

Low-Rank Adaptation (LoRA): With the increasing number of large-scale pretrained models, full fine-tuning
becomes less feasible. LoRA freezes the pretrained model weights of large scale models and efficiently fine tunes
it by injecting significantly small number of trainable parameters into specified layers of the architecture for
downstream tasks. CLIP is a large multimodal generative model that has been extensively trained on huge number
of natural image text pairs. In this study we evaluate and benchmark it’s performance on the MedMNIST data
with a LoRA adaptation. By identifying and updating key parameters related to the target task, CLIP can maintain
its generalization capabilities while achieving task-specific performance improvements through fine-tuning.

3.3 Experimental Setup

For each dataset, at first, we split them up into train, test and validation segments. Dataset was resized to
224x224 dimension, with the nearest interpolation scheme and then normalized. We did not apply any additional
augmentation scheme, for fair comparisons. We implement a simple early stopping mechanism, and at each
epoch update it based on the validation loss. The same parameters are utilized across specific model families,
as described in the earlier sections. Table 2 contains the specific values for each of the hyperparams we have
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used. As mentioned before, the Auto-sklearn automatically finds the appropriate hyperparameters based on
pre-defined configurations - so we omitted the values that have been used in the various statistical models within
the framework. Each deep-learning model was trained on a single V100 GPU, with 12 GB VRAM.

Table 2. Hyperparameter configuration used for our experiments

Model Family | Hyperparameter | Value Table 3. Model parameters
Epoch 100

CNN Lea.rmng Rate 0.001 Model Params
Patience 10
Batch Si 3 Resenet-18 | 11M
Ea ¢ " e T Resnet-50 24M
LS:SrCnin Rate 0.001 ViT-bas 86M

Transformers - g . SWIN 3B
Patience 10 CLIP 5IM
Batch Size 256 T oRA CLIP | 157M
Epoch 10 o

VLM Learning Rate 0.00001
Batch Size 128
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4 RESULT

In this section, we present the experimental results and analysis of the benchmarking study conducted on the
PathMNIST, ChestMNIST, and OctMNIST datasets. We employ two widely used performance metrics: Area Under
the Receiver Operating Characteristic Curve (AUC) and Top-1 Accuracy. AUC captures the model’s ability to rank
the classes correctly and handle class imbalance.A higher AUC value indicates better discriminative power of the
model. On the other hands, Top-1 Accuracy provides a straightforward measure of the model’s classification
accuracy, reflecting its ability to assign the correct class label to each input image. By evaluating the models
using both AUC and Top-1 Accuracy, we can obtain a well-rounded assessment of their performance.

Below, we have generated a separate performance table for each of these datasets (Tables 4, 6 and 5). We ignore
the performance of CLIP based models for the ChestMNIST dataset, because CLIP only recently started supported
multi-label classification.

Table 4. Performance on PathMNIST Table 5. Performance on OctMNIST
Model Split | AUC | ACC Model Split | AUC | ACC
auto-sklearn Train | 0.99 | 0.90 auto-sklearn Train | 0.98 | 0.96

Val 094 | 0.71 Val 0.95 | 0.88
Test | 095 | 0.73 Test | 0.90 | 0.62
Resnet-18 Train | 0.99 0.97 Resnet-18 Train | 0.99 0.98
Val 0.99 | 0.96 Val 0.97 | 0.92
Test | 0.97 | 0.87 Test | 0.94 | 0.68
Resnet-50 Train | 0.99 | 0.99 Resnet-50 Train | 0.99 | 0.94
Val 0.99 | 0.98 Val 0.97 | 0.92
Test | 0.98 | 0.90 Test | 095 |0.71
ViT Train | 0.99 0.91 ViT Train | 0.88 0.73
Val 0.99 | 091 Val 0.87 | 0.71
Test | 097 | 0.86 Test | 0.83 | 0.71
SWIN Train | 0.99 0.93 SWIN Train | 0.85 0.74
Val 0.99 | 0.93 Val 0.85 | 0.74
Test 0.98 0.87 Test 0.80 0.45
Zero-shot CLIP | Train | 0.50 | 0.14 Zero-shot CLIP | Train | 0.50 | 0.12
Val 0.50 0.13 Val 0.50 0.12
Test | 0.67 | 0.23 Test | 0.45 | 0.23
LoRA CLIP Train | 0.99 0.96 LoRA CLIP Train | 0.99 0.91
Val 0.99 | 0.97 Val 099 | 0.91
Test | 0.99 0.84 Test | 0.98 0.90

Several meaningful observations can be made from the performance tables :

o If we consider the AUC score, the CNN based models perform consistently good across all three datasets.
This is interesting because CNN models are magnitudes smaller than the all other deep-learning models we
have trained. The statistical models also performs comparably on this metric, except on the ChestMNIST
dataset.

o While all models accept Zero-shot CLIP perform well in the PathMNIST dataset, the performance of both
the statistical and transformer models drop significantly in AUC scores for the other two datasets.
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Table 6. Performance on ChestMNIST

Model Split | AUC | ACC
auto-sklearn | Train | 0.73 | 0.82
Val 0.67 0.82
Test 0.65 0.82
Resnet-18 Train | 0.99 0.98
Val 0.97 0.92
Test 0.94 0.68
Resnet-50 Train | 0.99 | 0.94
Val 0.97 0.92
Test 0.95 0.71
ViT Train | 0.71 0.94
Val 0.69 0.94
Test 0.69 0.94
SWIN Train | 0.69 0.94
Val 0.68 0.94
Test 0.68 0.94

o During classification, the CNN models have a noticeable drop in test scores, from validation score - which
indicates the presence of some overfitting. Statistical model performed comparably or better to CNN models

during test set classification.

o All models had the most difficulty classifying the OctMNIST dataset, while they performed their best on
the PathMNIST dataset. On the other hand, models had their worst AUC score on the ChestMNIST dataset.

o The zero-shot learning approach using CLIP exhibits poor performance across all datasets, with AUC and
accuracy scores close to random guessing (0.5 and 0.1-0.2, respectively). This indicates that the pre-trained
CLIP model, which was trained on a large corpus of natural images and associated text, does not transfer
well to the medical image classification tasks without fine-tuning.
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5 DISCUSSION

In this section we will analyze the performance and corresponding observations made from the three tables in
the previous section, and discuss their apparent strength and limitations as gleaned from these results.

The datasets used in this benchmarking study cover different medical imaging modalities, each with its own
unique characteristics and challenges. Auto-sklearn, as a traditional machine learning model, shows decent
performance on the train and validation splits of the datasets. However, its performance on the test splits is
generally lower compared to the deep learning models (except in ChestMNIST). This can be attributed to the
limited ability of traditional machine learning algorithms to capture complex patterns and hierarchical features
in medical images. Auto-sklearn relies on manual feature engineering and may struggle to extract the most
discriminative features, especially in datasets with intricate details like PathMNIST and OctMNIST. The drop
in performance on the test splits suggests that auto-sklearn may overfit to the training data and have limited
generalization capability.

The consistent performance of Resnet models suggests that they are well-suited for medical image classification
tasks regardless of the modality of images. However, their performance suffered in the multi-label multiclass
scenario (ChestMNIST). In this setting both of the transformer models had a superior performance. Nevertheless,
Resnet models still outperform other models on OctMNIST, indicating their robustness and adaptability to
different image types. They also require much less resource to be trained from scratch, and would likely perform
even better with a strong pre-trained weight initialization.

The self-attention mechanism employed by ViT is effective in capturing long-range dependencies and global
context in pathological images. However, ViT’s performance on ChestMNIST and OctMNIST is relatively lower
compared to Resnet models. This could be due to the limited size of these datasets, as ViT typically requires larger
training data to fully leverage its self-attention capabilities. Additionally, the global attention mechanism of ViT
may not be optimal for capturing local features and fine details in chest X-rays and OCT images.

The SWIN Transformer exhibits mixed performance across the datasets. While it performs well on PathMNIST,
its performance on ChestMNIST and OctMNIST is notably lower compared to other deep learning models. The
hierarchical structure and local attention mechanism of SWIN may not be as effective for capturing the specific
characteristics of chest X-rays and OCT images. The limited performance on these datasets suggests that the
SWIN Transformer’s architecture may need further optimization or adaptation to handle the unique properties
of these image types effectively.

The zero-shot CLIP model, which relies on pre-training on a large corpus of natural images and associated
text, shows poor performance across all datasets. This highlights the limitations of directly applying models
trained on general visual tasks to specialized medical domains without fine-tuning. The low AUC and accuracy
scores indicate that the features learned by CLIP during pre-training do not transfer well to the medical image
classification tasks, and it may even be very sensitive to prompt-tuning. Since CLIP is trained only for recognizing
a single object per image it is not suitable for multi-label classification we do not explore its performance on the
ChestMNIST dataset. However, there has been recent work [1, 13] that propose extensions of CLIP to multi-label
classification tasks.

LoRA CLIP significantly improves upon the zero-shot CLIP performance and even surpasses some of the deep
learning models on the test split. This suggests that fine-tuning pre-trained models with domain-specific data and
adapting the model parameters can greatly enhance their performance on medical image classification tasks. The
success of LoRA CLIP highlights the importance of transfer learning and fine-tuning strategies when leveraging
pre-trained models in specialized domains.

Overall, the choice of model architecture and training strategy should be tailored to the specific characteristics
and challenges of each medical image dataset to achieve optimal performance.
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Fig. 3. OCTMNIST
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