
CS585 - Assignment 2
Name: Nazia Tasnim
Teammate: Shubhrangshu Bit
Date: 02/14/2024
Problem Definition

The problem is to implement a simple image processing pipeline that takes input
image stream from the webcam, performs a series of image processing operations
to identify the object of interest, and then displays the processed image with
the object of interest highlighted on a GUI.

In our case the object of interest is human hand, and we plan to identify 4
different hand gestures corresponding to 1, 5, 6 and 9 in Bangla Sign Language
System. - Index and middle finger for 1 -> 161 sample - Open palm for 5 -> 152
sample - Thumbs up for 6 -> 154 sample - Thumbs down for 9 -> 149 sample

Challenges

• Identifying skin-color bobs across various lighting conditions and orienta-
tion is difficult

• Gesture detection may be influenced by the background
• Finding an appropriate template for each gesture is not a linear task. The

same can be said for the thresholding values
• The hand gesture for 1 and 6 are very similar and can be easily confused.

Method and Implementation

While similar pipelines can be made very sophisticated using deep learning
and other advanced techniques, we strictly stuck with the techniques de-
mosntrated to us in the classes and labs. To simplify some of the modules,
we have used opencv-python library. Few modules were also adapted directly
from lab exercises. The demo pipeline can be run from exp_nb2.ipynb file.
The utils and modules are in utils.py and modules.py respectively. The
video demo is also available here.

The pipeline consists of the following steps:

1. Capture Image: We capture the image from the webcam using
cv2.VideoCapture(0). A clean frame is captured to calculate the
background through frame differencing.We show 4 windows at a time, the
original frame, the background, skin detection, and the hand gesture. Re-
lated functions find_frame_difference(current_frame, background)
and get_motion_energy(frame_difference).

2. Skin Detection: We use the HSV color space to detect skin within a
certain range, and generate a binary mask. The mask is then used to

1

https://drive.google.com/file/d/1qRTVWPFaPgGFmDEeSmMu3zY5CPbabTkT/view?usp=sharing


filter out the non-skin pixels from the original frame.We calculate the
largest contour in the mask and draw a bounding box around it.Used the
following ranges for skin detection:

- Lower Range: [0, 100, 100]
- Upper Range: [20, 230, 230]

Related functions find_skin_color_blobs(frame), find_contours(mask), &
find_projection_bounding_box(frame).

3. Shape Features: We fit an ellipse around the largest contour,
then calculate it’s circularity, orientation, size and position. The
initial plan was to use this information to reduce the search-space
during template matching and modify the templates accordingly. Re-
lated functions get_shape_features(shape_frame, contour, x, y),
get_orientation_features(moment), & degree_to_plaintext(theta).

4. Template Generation: We separate out a subset of the im-
ages for each class and average them out to get a single tem-
plate for each class. We also threshold the templates to get
a binary image. Template can be generated from either the
skin blob mask or the largest contour ROI. Related functions :
generate_template(image), generate_template_from_mask(mask), &
get_thresholded_template(template_directory).

5. Pyramid Generation: Pyramid is generated for both the templates and
the skin blob mask. This is done to match the templates with the skin
blob mask at different scales. By default we use 6 levels of image pyramid
for both. Related functions get_pyramid(image).

6. Template Matching: This stage combines all the submodules described
earlier for a custom template matching pipeline. Image and templates
are matched against each other through cv2.matchTemplate across
corresponding pyramid levels. After iterating through each level, we
calculate an average of the match scores to get the final match score.
If the match score is above a certain threshold, we draw a bounding
box around the matched region and show the gesture. Related func-
tions custom_template_matching(skin_mask,template_pyramids,
threshold=0.6).

7. Display: We display the original frame, the background difference, the
skin blob mask, and the hand gesture in separate windows. We also display
the shape features and the match score on the original frame in the ges-
ture window. When the gesture is detected, we display the corresponding
number on the gesture window.

2



Experiments

Following the pipeline, we have experimented with different threshold values for
gesture detection, different number of pyramid levels, largest contour offsets, and
different number of images for template generation. We also had to manually
tweak the skin color range through trial and error to get the best results. We
also experimented with rotating and flipping the templates to see if it improves
the accuracy.

Results

After an initial phase of qualitative testing, we proceeded to calculate confusion
matrix and accuracy for the 4 classes. The results are as follows Confusion
Matrix:

1 5 6 9
1 135 18 0 4
5 94 36 20 2
6 96 37 18 3
9 32 51 33 33

- The pipeline performs best for identifying the gesture for 1, and worst for 6.

• Generating templates from skin masks is more accurate than generating
templates from the largest contour ROI.

Discussion

The pipeline is not perfect and has a lot of room for improvement. The skin
detection is not robust and can be easily influenced by the background. The
template matching is also not very accurate and can be influenced by the ori-
entation and size of the hand. The pipeline is also not very fast and can be
optimized further.

However, it is to be noted that the methodology we employed is heavily re-
stricted by only using the techniques we have learned in the class. Even without
using deep learning, we may be able to improve performance by using techniques
such as k-means clustering for skin detection, convex hull for finger detection
and using more advanced template matching techniques such as SIFT or SURF.

Conclusion

In conclusion, we have implemented a simple image processing pipeline to detect
hand gestures. When the background is dark and there is a single light source,
resulting in fewer background noises, and when the hands are clearly visible in
the video, the accuracy rate is satisfactory.

3


	CS585 - Assignment 2
	Name: Nazia Tasnim
	Teammate: Shubhrangshu Bit
	Date: 02/14/2024
	Problem Definition
	Method and Implementation
	Experiments
	Results
	Discussion
	Conclusion



