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1 Problem

Consider the problem -

min f (x) = 2x2
1 + 3x2

2 − 3x1x2 + 2x1 − 4x2

Starting from the initial point x1 = 0, x2 = 0 solve the problem using two methods -

• Davidon-Fletcher-Powell (DFP) Method

• Fletcher-Reeves (FR) Conjugate Gradient method

The first method corresponds to a Quasi-Newton method which is to be implemented with the
initial approximation of the inverse of the hessian as identity : D1 = I2.
Further show that the directions generated by the two methods at every iteration are identical and
explain the reason behind this.

2 Solution

2.1 Visualizing the function
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The above plot along with the form of the objective function f (x) makes it very clear that it is
convex and moreover it is quadratic in nature. Before implementing the two methods mentioned
above we compute the expressions for the gradient and hessian of the objective function.

∇ f (x) =
[

4x1 − 3x2 + 2
6x2 − 3x1 − 4

]

H = ∇2 f (x) =
[

4 −3
−3 6

]
Unconstrained minimzation of a function involves two parts -

• Line Search

• Direction Search

In this problem we have used the backtracking line search method based on the Armijo’s rule to
obtain an optimum step length given a direction.

2.2 Davidon-Fletcher-Powell Method

Given in the problem the initial approximation of the inverse of the hessian is D1 =

[
1 0
0 1

]
. Since

the objective function is quadratic the DFP algorithm restarts after every 2 iterations. Furthermore,
D3 obtained at the end of the iteration is precisely the inverse of the Hessian matrix H.
If we can show that the directions obtained from the DFP method are H − conjugate then a part
of our problem statement is resolved. After implementing the DFP update method in python we
have the obtained the following iterations -

Y1 Y2
0 0.000000 0.000000
1 -0.239361 0.478721
2 -0.017156 0.640839
3 -0.018666 0.658484
4 -0.000793 0.667150

Directions
0 [-2.0, 4.0]
1 [0.4508990635339303, 0.32897110370136995]
2 [-0.00885860110306158, 0.10349590165459244]
3 [0.03626748089654302, 0.017585432875661566]
4 [0.004623322800861196, -0.005280462049949364]

D
0 [[1.0, 0.0], [0.0, 1.0]]
1 [[0.7173076923076922, 0.41153846153846146], [0...
2 [[1.0, 0.0], [0.0, 1.0]]
3 [[0.7791058086976662, 0.4025184701081798], [0...
4 [[1.0, 0.0], [0.0, 1.0]]
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Observe that after every two iterations the approximation of the inverse of the hessian Dj is
reverted to I2.

Plotting the iterations on the contours of the objective function the following diagram is obtained-

Observations:
Note that the method precisely reaches the optimal point [0, 0.667] in just two iterations. This
verifies the result from conjugate gradient that in quadratic objective functions the algorithm is
supposed to terminate in just n (here 2) iterations. The DFP method also mimics this result in
the above plot thereby approving to our problem that the directions are identical to those of the
conjugate gradient method.

2.3 Fletcher-Reeves Conjugate Gradient Method

The conjugate gradient method is primarily based on the n H-conjugate directions where H is the
Hessian matrix of an objective function. Here since the objective function is quadratic we have
a fixed Hessian matrix H, as mentioned above, which is symmetric and positive definite. We
then obtain the conjugate gradient directions from H and update the direction at every iteration
according to the rule -

dj+1 = −∇ f (yj+1) + αjdj
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Based on the value of αj there are many variants of the CG algorithm and one such is the Fletcher-
Reeves for which -

αj =
‖ ∇ f (yj+1) ‖2

‖ ∇ f (yj) ‖2

Using python if we implement the above method for our problem the iterations are tabulated
below -

X Y f(X) Norm Directions
0 0.000000 0.000000 0.000000 4.472136 [-2, 4]
1 -0.250000 0.500000 -1.250000 0.559017 [0.46875, 0.3125]
2 -0.015625 0.656250 -1.333008 0.034939 [0.03125, 0.015625]
3 0.000000 0.664062 -1.333313 0.017469 STOP

Plotting the iterations on the contours of the objective function-

Observations: The algorithm almost reaches the optimal point in just two iterations which verifies
the result that the algorithm converges in n (here 2) iterations in case of quadratic functions.
Now in order to compare the directions obtained by the two methods - DFP and FR, we compute
the norm of the difference of the two and have obtained the following result -

0.0
0.02428895201232323
0.09659190048878616
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To get a visualization of the similarity of the directions obtained in the two methods we plot the
iterations of both the methods onto one contour plot as provided in the following figure -

Observations:

• The directions are almost identical.

• Both the algorithms reach the optimal point precisely in just 2 iterations.

• There is a slight variation in the direction obtained starting from the second point. This is
due to the step length computed iteratively using the backtracking line search algorithm.
The step length obtained in each case is not the optimal, it includes some computational
errors. Moreover the matrix computations also involve some errors. If these errors can be
minimized by exact computations the directions will be exactly same in both the methods.
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3 Explanation

After getting a hold of the practical view of similarity it requires an explanation of the results
obtained. As mentioned earlier we now prove that the directions obtained from the DFP method
are H − conjugate.

Let H be ab n× n symmetric positive definite matrix, and consider the problem to minimize -

f (x) = cTx +
1
2

xT Hx

subject to x ∈ Rn. We solve the problem by the DFP method starting with an initial point y1 and
a symmetric positive definite matrix D1 as the approximation of the inverse of the Hessian. In
particular for j = 1, 2, · · · , n, let λj be an optimal solution to the problem to minimize f (yj + λdj)
subject to λ > 0 and yj+1 = yj + λjdj, where dj = −Dj∇ f (yj) and Dj is determined by -

Dj+1 = Dj +
pj pT

j

pT
j qj
−

DjqjqT
j Dj

qT
j Djqj

where pj = λjdj = yj+1 − yj

qj = ∇ f (yj+1)−∇ f (yj)

If ∇ f (yj) 6= 0 for each j, then the directions d1, d2, · · · , dn are H-conjugate.

We need to show that for any j with 1 ≤ j ≤ n -

dT
i Hdj = 0 f or i 6= k; k ≤ j

For j = 1 this is obvious since we have only one direction and thus trivially any di where i < j
may be considered as zero thereby satisfying the above. To show that this holds for j+1 we use
the method of induction. Say the above is true for j ≤ (n− 1). Now for j > 1 first consider the
expression -

Hpk = H(λkdk) = H(yk+1 − yk) = Hyk+1 − Hyk = ∇ f (yk+1 −∇ f (yk) = qk

Then Hp1 = q1. Therefore,

D2Hp1 = (D1 +
p1 pT

1

pT
1 q1
− D1q1qT

1 D1

qT
1 D1q1

)q1

=⇒ D2Hp1 = D1q1 − p1 + D1q1 = p1

The terms can be cancelled out since they are scalars. Since p1 = λ1d1 we can equivalently write
D2Hd1 = d1.
By the induction hypothesis this holds for i ≤ j -

Dj+1Hdi = di (1)

6



Since we are interested in a quadratic problem so f (yj + λdj) achieves a minimum at λj only if the
gradient with respect to λ -

∇ f (yj + λdj)
Tdj = 0

=⇒ ∇ f (yj+1)
Tdj = 0

So dT
i ∇ f (yi+1) = 0. Now we are interested in the term dT

i ∇ f (yj+1) where i ≤ j. We can write -

∇ f (yj+1) = c + Hyj+1 = c + H(yi+1 +
j

∑
k=i+1

λkdk)

= c + Hyi+1 +
j

∑
k=i+1

λk Hdk

Since we have by induction hypothesis assumed that for j ≤ (n− 1) the directions are conjugate
gradient so -

dT
i ∇ f (yj+1) = di∇ f (yi+1 +

j

∑
k=i+1

λkdi Hdk

=⇒ dT
i ∇ f (yj+1) = 0

Thus for any i ≤ j we have dT
i ∇ f (yj+1) = 0. Then -

0 = dT
i ∇ f (yj+1) = (Dj+1Hdi)

T∇ f (yj+1) [using (1)]

= dT
i H(Dj+1∇ f (yj+1)) = −dT

i Hdj+1

This completes our induction proof that dT
i Hdk = 0 for all i 6= k; i, k ≤ j and 1 ≤ j ≤ n. Hence the

directions obtained from the DFP method are H-conjugate which proves a part of our result that
the directions obtained from CG method using Fletcher-Reeves are identical to those from DFP
method.

Before moving to the similarity of the directions obtained from the two methods a restart strategy
used in both the methods and it’s justification is of utmost importance.
Restart Strategy:
In the explanation above we have seen the result -

Dj+1Hdi = di

where i ≤ j
This implies that di is an eigenvector of Dj+1H corresponding to the eigenvalue 1. Hence, at
each step of the method, the revised approximation of the inverse of the Hessian accumulates one
additional linearly independent eigenvector, with a unit eigenvalue for the product Dj+1H, until
Dn+1H finally has all its n eigenvalues equal to 1, giving -

Dn+1HP = P

where P is the matrix of eigenvectors of Dn+1H. Hence -

Dn+1H = In
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=⇒ Dn+1 = H−1

Therefore in quadratic case we will have - D3 = H−1.
Similarly the restart strategy is also implemented in the conjugate gradient method. Essentially in
a quadratic objective function the method is expected to reach the optimal in just 2 steps and the
need for restart in not applicable, however due to inexact line search methods used and floating
point errors this becomes helpful.

So, now the question arises in a quadratic case how are the directions obtained from these two
methods related? The first direction for CG method is -

dCG
1 = −∇ f (x1)

whereas that of DFP method with the starting approximation D1 = I2 -

d1 = −D1∇ f (x1) = −∇ f (x1)

Thus dCG
1 = d1. Now moving on to the next iteration -

For CG method -
dCG

2 = −∇ f (x2) + β jd1

where β j is the FR multiplier.
For DFP method -

d2 = −D2∇ f (x2) = −(I2 +
p1 pT

1

pT
1 q1
− D1q1qT

1 D1

qT
1 D1q1

)∇ f (x2)

Now as we proved earlier the DFP directions are also H − conjugate we must have -

dCG
2 HdCG

1 = d2Hd1 = 0

Here since our objective function is quadratic the space generated by the directions will be of
dimension 2 and the directions will be H − orthogonal i.e, orthogonal in that space (This space
generated by conjugate gradient directions is known as Krylov space κ).

=⇒ dCG
1 , dCG

2 ∈ κ2(dCG
1 , H)

and also
=⇒ d1, d2 ∈ κ2(d1, H)

In this space dCG
1 is orthogonal to dCG

2 and also d1 = dCG
1 so d2 is orthogonal to d1 and dCG

1 implying
-

dCG
2 = δd2

This delta is a scalar > 0 (since we know the directions are descent) and thus dCG
2 ‖ d2. The

parallel directions result due to varying step lengths resulting from inexact line searches, if exact
line searches are used without any floating point errors then δ = 1 and then the identical directions
- dCG

2 = d2.

Now note that since we had the initial approximation of the inverse of the Hessian H to be I2 lead
to dCG

1 = d1. In case of any other initial value it wouldn’t have been the same. However if we have
D1 = In the directions from the two methods can be further extended for n to be parallel using the
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method of induction as proved in [2]. The connection of FR with DFP can be further explained for
D1 = I from the following simplification.
We know the FR direction update rule -

dCG
k = −∇ f (xk) + βkdk−1

= −∇ f (xk) +
∇ f (xk)

T∇ f (xk)

∇ f (xT
k−1∇ f (xk−1)

dk−1

= −∇ f (xk) +
dk−1∇ f (xk)

T

∇ f (xT
k−1∇ f (xk−1)

∇ f (xk)

= −(I +
dk−1∇ f (xk)

T

∇ f (xT
k−1∇ f (xk−1)

)∇ f (xk)

Thus CG method using FR can be viewed as a Quasi-Newton method with the initial approxima-
tion being I which is updated according to the above rule.

This completes our explanation and justification of the identical search directions obtained from
the CG and DFP methods.

4 Applications

Optimization is one of the core components of any Machine Learning algorithm. The essence
of most machine learning models is to build an optimization problem and learn the optimal pa-
rameters defining the underlying fuunction from the given data. In today’s era of Big Data the
efficiency and effectiveness of the numerical optimization algorithms dramatically influence the
popularization and application of machine learning models.
From the perspective of gradient information optimization algorithms mainly constitutes :

• First order

• High-order

• derivative-free

The first order algorithms such as stochastic gradient descent, ADAM, AdaGrad etc. are very
popular but there are many limitations. The high-order algorithms makes use of the curvature
information to address those limitations like when we have highly non-linear and ill-conditioned
objective functions, which are very common in deep neural networks and also in deep rein-
forcement learning models. However including curvature condition exactly incurs huge cost for
large data, which can be addressed using the Quasi-Newton methods and Conjugate Gradient
methods.
Quasi-Newton methods, specially L-BFGS initially developed from DFP method, is a widely
used algorithm in deep neural networks to solve the problem of empirical risk minimization. In
recent years a modification of the L-BFGS was developed which uses the idea of trust-regions
as an alternative to the gradient descent. The motivation behind trust regions is to find the
search direction, dk, in a region within which they trust the accuracy of the quadratic model of
the objective function. These methods not only have the benefit of being independent from the
fine-tuning of hyper parameters, but they may improve upon the training performance and the
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convergence robustness of the line-search methods. A further reading can be referred in [5]
The reinforcement learning (RL) problem, – a class of machine learning – is that of learning
through interaction with an environment and the learner is the agent. This mainly involves
finding an optimal policy π∗ to get the maximum return. This is a class of solution methods to
Markov Decision Processes where the agent has no prior information about the environment
models i.e, the state transition probabilities and reward function. Thus based on the experience it
tries to learn the underlying parameters which basically can be formulated as an empirical risk
minimization which has been found to perform very well using Quasi-Newton methods. This
can referred to in [5]
In present world of recommendations, reviews, tv shows machine learning models form the base
of any major project. Collaborative Filtering (CF) are one such class of models which is a method
of automatic predictions (filtering) about the interests of a user by collecting preferences from
many users (collaborating). In these algorithms arises the problem of solving weighted ridge
regression (WRR) where the observations are weighted. The CG method is a state-of-the-art
approach for the approximate solution WRR problems and is also used in one the most popular
streaming service today - Netflix. Further explanation can be referred in [4]
The Conjugate Gradient method is also very popular in many areas. In solving fluid mechanics
problem CG method plays an important role to solve the Navier-Stokes equations governing
viscous incompressible fluids, which is basically a discrete system of non-linear equations. A
wholesome description is in [6]
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