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Abstract

In recent years, Raman spectroscopy has become very popular due to the ad-

vancement in instrumentation have allowed us to focus on their application rather

than on the operation and limitations of the instrument. The large scale information

provided by a single Raman spectrum includes the molecular structure, qualitative

and quantitative information of the analyte. This work leverages this data to quan-

tify the amount of constituents in the analyte and also simultaneously generate a

spatial distribution of the same thereby providing a agile reverse engineering pro-

cess. The study is based on simple linear models and matrix computations like

linear regression, multivariate curve resolution which have been moulded according

to the requirement of the problem. We further use statistical F-test and statistics

such as R2 in order to evaluate the results and filter the unwanted from the data.

The proposed pipeline relies on the basis of Beer-Lambert law however without any

reliability on any form of calibration data. Moreover, our framework allows the

quantification and spatial distribution to be specific to a particular layer or region

of the analyte. All the work will be consolidated into an UI enabling users to analyze

with a few clicks.
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Chapter 1

Introduction

In recent years the pharmaceutical industry has been obliged to comply with in-

creasingly stringent regulatory requirements enforced by the Food and Drugs Ad-

ministration (FDA). These requirements have been enforced in order to ensure that

the risks associated with pharmaceutical products to public health are minimized.

The FDA has encouraged pharmaceutical companies to invest resources into devel-

oping advanced methodologies that improve their understanding and subsequently

the control of their manufacturing process.

In order to improve the quality of their products and understand the characteri-

zations a step deeper a number of pharmaceutical companies have embraced the use

of various spectroscopic imaging techniques, such as near infrared (NIR), infrared

(IR) and Raman. These techniques are being explored as potential methods for

advanced characterization of quality of products [31], [13]. Amongst several evolv-

ing applications of spectroscopy in the pharmaceutical industry include producing

chemical images of constituent components on the surfaces of the tablets [17] and

determination of content uniformity [11].

Raman spectroscopy has become more popular in recent years because improve-

ments in instrumentation have allowed us to focus on their applications rather than

on the operation and limitations of the instrument. A single Raman spectra can

provide a large scale information about the sample. Its many well-resolved spec-

tral features often provide good specificity for qualitative analysis and good analyte

selectivity for quantitative analysis. Raman spectroscopy is more often associated

with the determination of molecular structure and with qualitative analysis than it
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is with quantitative analysis. Applications of Raman spectroscopy for quantitative

analysis of sample composition have, however, been described extensively in tech-

nical literature. The ability of Raman spectra to uniquely identify and generate a

fingerprint corresponding to each of the components encourages it’s application into

newer heights. The results of quantitative analysis is a value specifying the amount

of something in a sample of interest, an estimate of uncertainty in that value and

if possible, independent information that tests the validity of the attained results.

The trend towards automating the entire process without any human intervention

in order to address very large data sets and to reduce the impact of operator bias

on the analytical results places greater importance on robustness and validity test-

ing. A computer aided statistical/mathematical analysis in the absence of Raman

experts is the final goal.

Since the introduction of the mathematical formalization and information the-

ory over five decades ago, scientists have found applications of the theory in many

diverse fields of science and technology. Various methods developed have proved

to be particularly powerful when applied to model instrumental measurements [3],

[9]. The use of information theory for analytical chemistry has been the subject

of explicit development since the early 1970s. Methods for determining the chem-

ical composition of various materials and composites were developed using signals

bearing such information. This lead to the generation of an amalgam of analytical

chemistry and statistical/mathematical analytics popularly known as chemometrics.

With the advent of data science the field of chemometry has been enriched further

with more data driven models generated from spectroscopy. The role of chemo-

metrics coupled with data science in the analysis of Raman spectroscopy data is

becoming increasingly important for many different application areas. It allows the

quantification and qualification of very complex systems and the usage of developed

multivariate techniques ensures full exploitation of the entire spectral data unlike

univariate techniques involving much human intervention and feature engineering.

Keeping in mind the above the project aims to build a multi-component image

analytics platform that can identify, discriminate & quantify fraction of each com-

ponent in a tablet using Chemical Imaging. Hence providing a spatial distribution

of the various components and particle statistics to understand the formulation and

process design space.
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Chapter 2

Literature Review

The phenomenon of inelastic light scattering is known as Raman radiation and was

first documented by Raman and Krishnan in 1928 [28]. Raman spectroscopy is

becoming one of the most popular analytical measurement tools for pharmaceutical

applications ranging from verification of raw materials to process monitoring of drug

production to quality control of products. Similar to infrared spectrum, Raman

spectrum consists of a wavelength distribution of peaks corresponding to molecular

vibrations specific to the sample being analyzed. Chemicals, such as drugs, can be

identified by the frequency and quantified by the intensity of the peaks.

2.1 Analysis of pharmaceutical formulations

Several pharmaceutical forms have already been studied by Raman spectroscopy.

One of the cited useful features of Raman spectroscopy is its ability to carry out

direct measurement in solids. Among the parameters that influence the intensity of

the Raman signal detected from solids are particle size and packing density.

Rodriguez [29] has described various experimental Fourier Transform (FT) Ra-

man imaging procedures and their ability to both obtain and spatially resolve chem-

ical information in the analysis of formulated tablets of pharmaceutical interest.

Experimental analytical procedures using the imaging techniques are outlined.

Breitenbach et al. [5] used con-focal Raman spectroscopy to examine solid disper-

sion of the anti-inflammatory agent ibuprofen. The group investigated the physio-

chemical stability of the formulation under stress conditions together with the con-

tent and the homogeneity of the drug distribution in the formulation matrix. The
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method was found to be promising for monitoring the spatial distribution of drugs in

solid dispersion. The authors have stated that Raman spectroscopy can investigate

different layers (e.g. coatings on a tablet), areas or simply the quality of mixing in

a manufacturing process, which is of great industrial importance.

It is very common to organize and archive Raman spectroscopy data as a 3-

dimensional hyperspectral image. Analysis of such huge hyperspectral images can

be time consuming and rigorous. Andrew et al. [2] have described two curve res-

olution methods namely Principal Factor multivariate curve resolution (PF-MCR)

and orthogonal projection multivariate curve resolution (OP-MCR) for analysis of

three-way Raman image data. The results from MCR analysis using either method

provides the number of chemical species present in the sample, the spectrum of each

species for identification, and the concentration image for each species. A discussion

is given addressing rapid analysis aspects of OP-MCR and the relative merits and

drawbacks of the technique in comparison to PF-MCR.

Findlay and Bugay [12] described how variable temperature (VT)-Raman spec-

troscopy can be used to study the dynamics of crystallization of menthol from a

solvent (ethanol). The authors stated that Raman spectroscopy can also be applied

as a quantitative technique, but some criteria must first be considered critically,

e.g. homogeneous sample mixing, particle size, and instrument variability and re-

producibility. They concluded that Raman spectroscopy can be used in the pharma-

ceutical analytical laboratory in a variety of ways. Traditional drug substance char-

acterization is enhanced with additional information provided by Raman spectral

data, and quantitative polymorph assays can be developed. Raman spectroscopy

can also be used qualitatively and semi-quantitatively to support pharmaceutical

development.

According to Langkilde et al. [20], [21], differences can be seen between Ra-

man spectra from different crystal forms of a compound, or between crystalline and

amorphous forms. These investigators showed that the possibility of minimal sample

preparation and the sensitivity to polymorphism make Raman spectrometry ideal

for the study of crystal forms of pharmaceutical compounds, as they observed dif-

ferent FT-Raman spectra from the two polymorphs of a compound. They identified

a frequency shift that leads to well resolved bonds and found that, for mixtures of

A and B, intensity of the two bonds were proportional to the amount of the A and

B forms.
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2.2 Quantitative/Qualitative Analysis Approaches

2.2.1 Pre-processing

Data processing prior to univariate/multivariate modelling is a necessary and im-

portant step. Pre-processing is primarily required to eliminate effects of unwanted

signals such as fluorescence, detector noise, calibration errors, cosmic rays, laser

power fluctuations, signals from glass substrate etc. and also to enhance subtle

differences between different samples [4].

The cosmic spike elimination from the raw spectrum is generally done by col-

lecting two extra spectra for each experiment and by comparing them on a pixel

by pixel basis. If the difference exceeds the expected detector noise variance of the

less intense pixel then the greater count is replaced by the smaller count. Generally,

spikes are sharper compared with genuine Raman bands. Usually, local interpo-

lation based methods are used to repair spike affected regions [23]. Whitaker et

al. [33] have presented a despiking algorithm based on the calculation of modified

Z scores (based on median of first order detrended spectra) to locate spikes and a

simple moving average filter to remove the located spikes. They have stated that

the algorithm is computationally efficient and inexpensive compared to collection of

multiple spectra for locating spikes.

Background correction/baseline removal is a very important part of pre-processing.

Various phenomenon explained such as fluorescence etc. induce uneven amplitude

shifts across different wavenumbers. These amplitude shifts have to compensated

before further analysis. In literature many such techniques have been compared and

evaluated in detail [4]. Some of the common methods employed for baseline removal

are:

• a) Median based Window Methods

A moving window based method where at each point only a few intensity values

(length of the window) in it’s neighbourhood are used to estimate the baseline

value at that point. The median of such a local window of intensity values at

each point is calculated first, followed by convolving with a Gaussian function

to make sure that the estimated baseline is free from sharp discontinuities [14].

• b) Derivative based Methods

In general, the baseline has broad bands and low frequency components com-

pared to genuine Raman bands. Derivative (numerical) of the Raman signal
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amplifies the higher frequency components whereas the lower frequency com-

ponents such as the background fluorescence is suppressed.

• c) Polynomial Fitting based Methods

This is by far the most commonly used method for baseline removal of Raman

spectra. In this method certain points in the spectrum are chosen as base

points and a polynomial is fitted through these points. This polynomial is

subsequently subtracted from the Raman spectrum to eliminate background

effects. Initially polynomial fitting typically required user intervention and

thus is time consuming and prone to variability. However, Lieber et al. [24]

automated the method of fluorescence subtraction based on a modification to

the leasts-squares polynomial curve fitting. Zhao et al. [35] further improved

this technique with the addition of a peak removal procedure during the first

iteration and a statistical method to account for signal noise effects thereby

improving the performance in real-time in vivo applications and low signal-to-

noise ratio environments. This was further worked upon to completely remove

any form of user intervention. Zhang et al. [34] developed a novel algorithm

named adaptive iteratively reweighted Penalized Least Squares (airPLS) which

works by iteratively changing weights of sum squares errors (SSE) between the

fitted baseline and original signals, and the weights of the SSE are obtained

adaptively using the difference between the previously fitted baseline and the

original signals.

Although baseline removal eliminates the effects of large band or low frequency

components in the Raman signal, it still suffers from high frequency component

and needs to be removed. Smoothing is often employed for the removal of high

frequency components, and SG (Savitzky Golay) filtering is one of the commonly

used smoothing techniques. The SG filter is a moving window based local polynomial

fitting procedure [32], which needs to be fed with parameters like the size of moving

window, polynomial order etc. As the moving window size increases, some of the

genuine Raman bands may disappear. Therefore, it is very important to choose an

appropriate polynomial order and moving window size to retain all the important

Raman bands.
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2.2.2 Univariate Data Analysis

The goal of univariate data analysis is to find a mathematical relationship between

the metric extracted from a Raman spectra, such as peak width, peak intensity

etc. and the desired property, such as analyte concentration. Several articles have

compared and analyzed the results of univariate techniques for quantification of

Raman spectra [19], [27].

Ivana Durickovic [8] has described a univariate methodology for analysis of a

particular analyte. The author has described that the position of the peak defined

by its maximum corresponds to the vibration frequency of the chemical species.

Since each chemical bond has its own characteristic vibrations, the position of the

peaks lead to the identification of the chemical species. The peak intensity is related

to the corresponding chemical species concentration. In order to determine this

parameter, it is necessary to use normalization of the integrated intensity of the

Raman line as the peak intensity is also sensitive to the laser power.

The mathematical relationship between the Raman metric and the desired prop-

erty of the analyte is called an analytical model. While it is theoretically possible

to calculate the analytical model, in practice several necessary constants such as

absolute Raman cross-section and optical collection efficiency are rarely known. As

a result, analytical models are almost always created by measuring Raman spectra

of known samples (the training set) and empirically relating the Raman metric to

the known property [25].

A novel method consisting of automatic decomposition of Raman spectra and

a model for quantitative analysis was developed for the analysis of components of

natural gas in [26]. In this work the concentration of the unknown component

was determined using the area of the vibration peaks in the spectra. However,

the quantification of components in this pipeline requires a calibration set which is

computationally expensive.

2.2.3 Multivariate Data Analysis

The spectroscopic data can be displayed in the forms of a matrix described in detail

in 4.1 in Chapter 4. The spectroscopic measurements consists of two parts -

Observation = Relevant Signal +Noise
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Here, the relevant signal is considered as the actual representation of the underlying

chemical information, which is correlated with the property of interest. There are

many multivariate data analysis techniques available and for an appropriate selection

the goal of the analysis should be clearly defined. The three major objectives for

analysis are -

• Explorative data structure modelling and dimensionality reduction. Principal

Component Analysis (PCA) is frequently is used for this purpose.

• Discrimination, Classification, Clustering deal with dividing a data matrix into

two or more group of measurements.

• Regression and prediction for quantifying a set of variables with respect to

another.

Unlike classification or clustering since our primary goal is to determine the

quantity of components in a sample, we focus on the existing literature in multiple

linear regression based data analysis techniques. Two matrices are used. in general,

X representing the hyperspectral image data and Y represents the pure spectra of the

dependent variables i.e. the components. In case of multiple linear regression, there

is an assumption of linear dependency of the regressor variables on the independent

variables. The regression of X is performed on Y using the least squares criterion

[6].

A major caveat arises due to high correlation between the independent variables

i.e. strong correlation between the spectra of the different components may cause

an ill-conditioned least squares problem. Principal Component Regression (PCR)

mitigates this problem by subjecting the independent variables Y through a dimen-

sionality reduction such as PCA and then performing regression of X on the decom-

posed matrix [15], [16]. However, a major shortcoming of PCR is that although the

latent variables obtained from PCA maximize the variance in predictor variables,

they may not be optimal for predicting the response as the covariance between the

predictor and response variables are not taken into account during PCA.

Partial Least Squares (PLS) is an improvement over both PCR and multiple lin-

ear regression overcoming their limitations. Unlike PCR, instead of the covariance

between the dependent variables XTX the covariance between the predictor and

response variables XTY is subjected to singular value decomposition [10], [15], [16].

The method can quite effectively handle one or more co-varying dependent variables

8



by projecting both X and Y into latent spaces T and U , such that T and U are cou-

pled, and chosen to maximize covariance between predictor and response variables

i.e. XTY . Subsequently a linear regression function is also learned between T and

U . However, PLS requires the number of samples/observations in X and Y to be

same, which is not the case in our problem and thus fails its application.

Multivariate Curve Resolution (MCR) is the generic denomination of a family of

methods meant to solve the mixture analysis problem, i.e., able to provide a chemi-

cally meaningful bilinear model of pure contributions from the sole information of an

original data matrix including a mixed measurement [30], [22]. Traditionally, MCR

was conceived for evolutionary analytical data coming from a process or an ana-

lytical measurement [22]. Many analytical measurements, particularly all of those

based on spectroscopic methods are particularly suited to be analyzed by MCR, since

the underlying analytical model (known as Beer-Lambert law) is formally a bilinear

model of pure signal contributions. The application of MCR has grown significantly,

and the fields of application have expanded in complexity and diversity. Within

the spectroscopic field, the structure in the concentration direction is no longer a

requirement. This has allowed analysis of hyperspectral images, in which the image

cube has two spatial dimensions and one spectroscopic dimension. To be unmixed,

a previous unfolding of the image cube, into a data matrix with rows designating

the pixel spectra and columns designating the spectral channels measured, must

be carried out. After MCR, an operation of refolding the concentration profiles is

needed to recover the spatial structure of the distribution maps of the pure image

components [18], [7], [1].
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Chapter 3

Methodology

We have developed a multi-level data analysis pipeline that can be curated according

to the necessity and demand of the user to generate intensive results and insights.

The input 3D hyperspectral cube containing the Raman spectroscopy data is passed

through a few pre-processing steps referred in Chapter 2, following which we perform

and allow the usage of multiple univariate and multivarite techniques to generate a

spatial distribution of the sample of interest along with the relative composition of

the components in the sample. In order to gain multiple insights we also allow an

interactive 3D visualization of the sample tablet which incorporates the selection of

region of interests (ROI) and further extend the study of quantification and spatial

distribution focused only in the selected ROI.

3.1 Pre-processing Pipeline

The input 3D hyperspectral cube is analyzed in reference to the spectral library

containing the pure spectra of all the components that the sample is composed of.

However, since the acquisition of the pure spectra of the components and that of the

sample spectra are under varying conditions the spectral length and wavenumbers

of the incident laser differ. In order to mitigate this and bring the spectra under

similar format both the pure spectra and the acquired spectra are truncated and

interpolated within a range provided by the domain expert or the user. In order to

perform interpolation we utilize the nearest neighbor algorithm to fill out the missing

positions. A typical acquired spectra before and after truncation and interpolation

is shown in 3.1. The spectral intensities have also been normalized using the Min-
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Max normalization technique [Chapter 2]. However, we also provide the option of

normalization using the technique of standard normal variate normalization (SNV).

Figure 3.1: Truncated and Interpolated acquired Raman spectra

Prior to addressing the undesirable frequency components in signal we remove

the spikes, caused by cosmic rays, using the method of modified Z-scores as described

elsewhere [33]. The acquired Raman spectra contains a lot of unwanted high and

low frequency components that can cause hindrance to further analysis. Thus we

primarily remove the baseline using the method of airPLS [34] since it requires the

least amount of human intervention. In order to ensure flexibility, the domain expert

or the user can also opt for polynomial fitting techniques [24] and [35]. Following

the removal of the low frequency component we then smoothen the high frequency

component using the SG filter [32] with a default setting of a window length of 5

consecutive points and the local polynomial order to be 2. A fully preprocessed

Raman spectra is shown in 3.2

3.2 Univariate Analysis

The pure spectra is then analyzed by the domain expert to specify the unique peak

determining the characteristic of a component. Provided a range of wavenumbers we

quantify the peak intensity [Figure:3.3] and the peak area [Figure:3.4] of the Raman

spectra at every spatial position along the cross section of the sample. The quantified

intensity/area values are then mapped onto a blank canvas containing the white light

image of the sample as watermark with the gradient of the color proportional to the

value. Generating such maps of all the components that the sample is composed of

we overlay all on top of each other to generate a visual representation of the spatial

distribution of the components.
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Figure 3.2: Acquired Raman spectra preprocessed using airPLS baseline removal
and SG filter smoothening

Figure 3.3: Intensity At A Point Figure 3.4: Peak Area

In terms of quantification we add the computed intensity/area values for each

component separately and generate a relative distribution. However, since even af-

ter pre-processing some amount of noise is inherent, we allow the user to filter the

intensity/area values further below or above a specified threshold. A good specifi-

cation of the threshold can generate almost accurate relative quantification of the

composition.

3.3 Multivariate Analysis

In order to overcome the problems in univariate methods we include a few existing

multivariate methodologies, which has already been described in Chapter 2. We

primarily approach in two ways:
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3.3.1 Pixel-wise Linear Regression

The idea of linear regression is based on Beer-Lambert’s law. The law says that at

any given wavelength i, the light absorbance (A) is proportional to the absorbance

coefficient of the pure substance (k) at the chosen wavelength i and the concentration

of the pure substance (c):

Ai = ki ∗ c (3.1)

where the absorbance coefficient (ki = ai ∗ L) is the product of the path length

of the light through the material (L) and the molar attenuation coefficient or ab-

sorptivity (a) of the pure substance at the chosen wavelength i, which is a molecular

property constituting the ‘spectrum’ of such molecule.

When there are multiple absorbing components, the total absorbance at any wave-

length is the sum of the absorbances, at that wavelength, of all the components in

the mixture:

Ai =

j=n∑
j=1

kij ∗ cj (3.2)

The above can be represented in matrix form as follows:

A = Kc+ e (3.3)

Therefore having the values of the acquired spectra A, and knowing the ones of the

pure component spectra making up the mixture K, we can find the concentrations

that best determine the acquired spectra. Due to noise it is not possible to obtain

the exact solution to the equation, we minimize the sum of squares of error i.e. the

Euclidean norm of the error:

||A−Kc||22 (3.4)

For each component we have a spectral signature as our regressor/independent

variable-

x =


intensitywv1

intensitywv2
...

intensitywvp

 (3.5)
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The dependent/regressed variable is the acquired spectra at a particular pixel loca-

tion:

y =


acqwv1

acqwv2
...

acqwvp

 (3.6)

We then perform simple linear regression and try to estimate the regression coeffi-

cient:

y = β0 + β1 ∗ x + ε (3.7)

Each pixel of a hyperspectral image has a spectral dimension containing the

Raman spectra at that position. Each such spectra is assumed to be generated by a

linear combination of the components that constitute the sample. Thereby, treating

each of the Raman spectrum as the regressed variable and the pure spectrum of

the components as the predictor variables we perform ordinary least squares based

linear regression.

At every pixel we store the adjusted R2 value along with the p-value of the F-test

used for testing the significance of the regression. The coefficients β̂ are also stored

corresponding to each pixel. It is important to note that we did not use any bias

in the linear model, since it may lead to some discrepancies, which is discussed in

Chapter 4.

3.3.2 Matrix Factorization

Pixel-wise linear regression takes a repetitive approach of performing linear regres-

sion at every spatial position, however in contrast to that we leverage the idea of

multivariate curve resolution of matrix factorization with the added information of

the pure spectral signatures of the constituent components. In general, multivariate

curve resolution methods permit, with no prior knowledge, to extract simultaneously

the spectra of the pure products and their corresponding concentration maps from

the experimental data matrix 3.5.

Unlike the univariate methods, there is no need to specify the characteristic

spectral zone. We have started by unfolding the hyperspectral cube D. The first

unfolding is necessary due to the two way character of the data though the data is

stored in three dimensions. Then a classical line by line unfolding method of the

spectral data matrix is used in our study. The x first spectra corresponding to the x
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Figure 3.5: Multivariate curve resolution method applied to Raman spectroscopy
data.

first pixels of the analyte are placed along the x first lines of the matrix D and so on.

Since in our study the number of constituents of the analyte and the pure spectral

signatures of the same are known apriory, the spectral matrix ST and the rank of

the matrices C and S are known. The only unknown is the concentration matrix

C. Thus, given the design matrix (spectral matrix) S and the unfolded acquired

data matrix D the goal is to find the abundance maps C. This is approached as a

classical least squares problem by minimizing the sum of squares of errors:

argminC ||D − CST ||22 (3.8)

However, in order to ensure that the concentration matrix C is devoid of any

non-negative values we include a contraint and optimize the contrained problem:

argminC ||D − CST ||22
subject to

Cij ≥ 0 ∀(i, j)
(3.9)

Moreover, since at every pixel the sum of proportions of the constituents are

expected to sum to one we further add a constraint the finally optimize the following

problem

argminC ||A− CST ||22
subject to

Cij ≥ 0 ∀(i, j)
DC = 1

(3.10)
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Chapter 4

Experimental Evaluation

4.1 Description of Data

We keep the names of the sample tablets and their composition undisclosed owing

to confidentiality of the research.

In general, human eye perceives its environment with a colourful rendering. In-

stead of a single grey-scale image, we visualize a combination of 3 channels red-

scale, green-scale and blue-scale. The combination of these three channels generate

a plethora of many possible colours and thus an image can be represented as a 3D

matrix with (nrows×ncolumns×3channels). However with the advancement in imaging

technology we can generate images with and get information regarding wavelengths

beyond the visible spectrum (red, green blue) and make sense out of it. In a broad

sense, spectral imaging is the parallel acquisition of spatial and their corresponding

spectral information in an image space and their combination thereof. The image

generated through such spectral imaging techniques are known as an hyperspectral

images shown in 4.2.

The hyperspectral images specific to our study is generated from Raman spec-

troscopy on a sample cross-section of a tablet. We have the hyperspectral images

corresponding to three major tablets with the following specifications:

• Product 1 :

Dimensions: 641× 711× 1015

Wavenumber cm−1: The spectral dimension range from 613.94 to 1723.53

• Product 2 :
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Figure 4.1: An exploration of the hyperspectral image. x and y represent the spatial
dimensions containing the frame of the analyte. z represents the channels corre-
sponding to varying wavenumbers of the incident laser.

Dimensions: 254× 304× 1015

Wavenumber cm−1: The spectral dimension range from 616.16 to 1721.79

• Product 3 :

Dimensions: 382× 589× 1039

Wavenumber cm−1: The spectral dimensions range from 482.35 to 1641.35

The format of the data was ’.wdf’ which is the extension of the file generated

by WiRE software associated with the spectrometer manufactured by Renishaw.

Along with the spectral data as a 3D hypercube a number of attributes of the file

are taken into account for better understanding and visualization. The white light

image of the sample containing the cross-section of the tablet is extracted from one

of these attributes. Also the wavenumbers corresponding to the spectra is extracted

as a separate vector. However, most of the studies associated with quantification

of components from Raman spectroscopy are based on calibration data and thus

require spectral data of the same sample with varying compositions. We on the

other hand attempt to quantify based on a single sample data using the library

containing the pure spectra of all the components that the sample is composed of.

4.1.1 Data organization

The extracted 3D spectral hypercube and the library containing pure components’

spectra are then organized in a format to enable further statistical analysis as shown

in 4.2. The hyperspectral image is read into a 3D matrix with the dimension

xpos×ypos×wavenumber, x and y represent the spatial dimensions and wavenumber

represents the spectral dimension. The spectra corresponding to the components in
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(a113) (a123) . . . (a1m3)

(a213) (a223) . . . (a2m3)

...
...

...
...

(an13) (an23) . . . (anm3)
(a112) (a122) . . . (a1m2)

(a212) (a222) . . . (a2m2)

...
...

...
...

(an12) (an22) . . . (anm2)
(a111) (a121) . . . (a1m1)

(a211) (a221) . . . (a2m1)

...
...

...
...

(an11) (an21) . . . (anm1)

Figure 4.2: 3D matrix containing a hyperspectral image. Each channel represent a
particular wavenumber.

pure form are extracted from the library and stored onto a 2D matrix with dimen-

sions ncomponents × wavenumber.

4.2 Evaluation Techniques

In order to evaluate the results of the analysis a multi-step technique was followed.

In the case of univariate methods the initial form of inspection of the abundance

maps was visual verification by the domain experts. Following which an interactive

platform was developed where clicking on a particular position of the abundance

map generates the spectrum corresponding to the nearest pixel and plots the same

against the pure spectral signatures of the constituent components 4.3.

Since the acquired spectra is a linear combination of the constituents’ spectra,

one can clearly visualize if the characteristic peak of a pure signature matches that

of the acquired spectrum. Since each of the component is mapped to a different color

this technique allows one to ensure that the abundance maps are correct. However,

clicking at every pixel position and visually verifying of the spectra matches can be

very tedious. Thus, we come up with the use of statistics while analyzing multivariate

methods.
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Figure 4.3: Clicking at a particular point on the abundance map generates the
spectra corresponding to the pixel at that location against the pure spectral signature
of the constituent component of choice

After pixel wise linear regression we use the F-test to ensure that the regression is

significant at every position.

• H0: Regression is insignificant - β1 = 0

• H1: Regression is significant - β1 6= 0

We have n observations (wavenumber and intensity pairs) for each pixel and the

number of regression parameters is 1, since we are regressing only with respect to

one component. Then

• Sum of Squares for Model: SSM =
∑n

i=1(ŷi − ȳ)2

• Sum of Squares for Error: SSE =
∑n

i=1(yi − ŷi)2

• Sum of Squares Total: SST =
∑n

i=1(yi − ȳ)2

• Degrees of Freedom for Model: DFM = 1

• Degrees of Freedom for Error: DFE = n− 1

• Total Degrees. of Freedom: DFT = n

• Mean of Squares for Model: MSM = SSM/DFM

• Mean of Squares for Error: MSE = SSE/DFE

• Mean of Squares Total: MST = SST/DFT
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The test statistic for our hypothesis is:

F =
MSM

MSE
=

explained variance

unexplained variance

We use the p-value generated by the ’statsmodel’ package of python to reject the

null hypothesis if the p-value is greater than α and fail to reject if lesser than the

same. In our study we have preset the value of α as 0.05, which can be changed by

the user.

Following the F-test we use the value of R2 in order to filter the pixels that have

very low R2 for a particular component. This filtering ensures that the pixel retained

has sufficient statistical evidence to be considered as a component. Further this is

again visually verified using the technique described above in univariate methods.

4.3 Analysis of Results

4.3.1 Univariate Intensity Map

The intensity corresponding to the peak specified by the user is mapped onto the

white light image of the sample to generate a spatial distribution of the component

over the ROI. Figure 4.4 shows the intensity map of a component on a portion of

the middle layer of a tablet.

Figure 4.4: Map of one components on the middle layer of the tablet. The variations
in the gradient of the colors in blue indicate the variations in the intensities of the
peak.
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Figure 4.5: Pixel wise Linear Regression based abundance map of component A

4.3.2 Multivariate Intensity Map

The intensity maps generated by multivariate methods are significantly better than

that of the univariate methods due to the robustness against noisy spectra. The

major drawback of univariate methods of prioritizing the characteristic region of

the spectra is avoided in the multivariate methods. Another problem lies in the

filtering of the pixels in order to get rid of those that do not contain a particular

component. In case of univariate methods the filtering is required to be done based

on the concentration value lying between 0-1, which becomes very subjective in

nature. However, in case of multivariate techniques the filtering is performed using

the value of R2. This enables the user to have a form of interpretation while filtering

the pixels in the abundance maps. Although, the R2 based filter could be used in

case of pixel wise regression this is not applicable in case of matrix factorization.

Notice that in Figure 4.5 the actual component is easily identified and filtered out

while in case of Figure 4.6 it becomes difficult to filter the component since some

other positions seem to have larger area under the characteristic peak than the actual

component. This problem arises when the characteristic peak range of components

overlap or are disguised within a noisy region as shown in Figure 4.7

4.3.3 Quantification

In order to quantify the constituents of a sample the majority of literature focus on

using a calibration data which is further trained to learn a linear regression model and

then used to predict the quantities for varying concentration inputs of the sample.

However, in this work we try to address the problem of extracting the unknown
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Figure 4.6: Pixel Area based abundance map of component A

Figure 4.7: Noisy Spectra leads to larger peak area although the spectra is not that
of the component under study
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quantity of components from a sample directly using the Raman spectroscopic data.

The quantitative Raman measurements utilize the following relationship between

signal, Sγ, at a given wavenumber, γ, and the concentration of the sample, C -

Sγ = KσγγL(γL − γβ)3P0C (4.1)

• K: Constant that depends on laser beam diameter, collection optics, sample

volume and temperature.

• σγ: Raman cross-section of the particular vibrational mode.

• γL: Laser wavenumber

• γβ: Wavenumber of the vibrational mode.

• P0: Laser Power

From the above equation it is apparent that peak signal is directly proportional to

concentration. On the basis of this relationship we try to quantify the components.

Using the univariate and multivariate methodologies described earlier we generate

an abundance map corresponding to each constituent depicting the intensity at every

pixel. Now, since the intensity is directly proportional to concentration according to

equation 4.1, the intensity map can also be looked upon as the concentration map

to some extent. Although we get the concentration map, the actual percentage of a

constituent still remains unknown. In order to deal with this problem, we use the

idea of relative concentration given in equation 4.2.

Relative proportion of component i

= Sum of pixel values of the concentration map of ith component∑
j(Sum of pixel values of the concentration map of ith component)

(4.2)
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Chapter 5

Discussions

The aim of this work is to build a quantitative tablet characterization platform that

can utilize the information generated from Raman spectroscopy and accurately quan-

tify the components in a sample. A number of permutations of the pre-processing

steps followed by univariate or multivariate methods can be used to generate re-

sults with high accuracy. We performed all the necessary pre-processing steps and

pixel based linear regression on a number of products and quantified the components

which were then validated against the actual values tabulated in Table 5.1

The quantification of the components with concentrations close or less than 1 %

are difficult to predict accurately primarily due to the instrumentation. The laser

width, step size and various such factors affect the proper capturing of data, thereby

leading to an average data acquisition. On the contrary, for components with sig-

nificantly larger quantities were predicted accurately with ¡ 4 % error.

Table 5.1: Validation of quantities of components (%)
Product Components Predicted Quantity (%) Ground Truth (%)

Product-I
Component-1 99.62 99.66
Component-2 0.11 0.34

Product-II

Component-1 4.39 4.42
Component-2 69.47 69.00
Component-3 17.80 17.25
Component-4 1.67 1.25

Product-III
Component-1 63.03 61.88
Component-2 24.16 22.27
Component-3 5.1 3.0
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In case of layered tablets we provide the added specification of quantifying the com-

ponents within each layer separately. This has been accomplished by usage of mask-

ing the particular layer of interest and then following the procedure as described

elsewhere [Chapter 3].

The quantities predicted are with respect to the total weight of the product. Thus,

given the innovator tablet and the constituent components with the respective pure

spectral signatures we can extract the Raman spectroscopic data from a cross sec-

tion of the tablet and quantify each of components.

However, the study is primarily based on the assumption that the product is ho-

mogeneous throughout, thereby data extracted from a single cross section is repre-

sentative of the whole tablet. Also all the multivariate models are made based on

the assumption that the acquired Raman spectra is a linear combination of the pure

spectral signatures of the constituent components.
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Chapter 6

Conclusions

Raman spectroscopy is a powerful and well-established tool for quantitative analy-

sis. The high information content from Raman spectra often allow simple analytical

models to be accurate and robust. Spectral pre-processing, noise analysis, and multi-

variate methods extend the quantitative capabilities to more complex samples. This

work has proven that even in the absence of calibration data simple linear models

are capable of quantifying and generating spatial distribution of constituents of an

analyte. The agile reverse engineering methodology allows fast and accurate break-

down of an unknown sample thereby benefiting the pharmaceutical industry of easier

production and development. Although the study is based on data generated from

Raman spectra of a drug, it can be further extended to other forms of absorption

or emission spectra in different domains. However, the combination of both multi-

variate and univariate methods may lead to better results. The recent availability

of rugged, turnkey analyzers together with flexible, non-contact sampling benefits

make the future for quantitative Raman analysis look very promising indeed.
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Tamás Vigh István Wagner Zsombor K Nagy György Marosi Péter Lajos Sóti,
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