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1.Introduction:

                       Probability plays an important role in almost every field-industry, commerce, 

physical and biological sciences etc. Whenever we make a decision under uncertainty, 

consciously or otherwise we actually make a probability statement. In several instances the 

frequency definition of probability defies logical interpretation and a ‘subjective’ or ‘degree 

of belief’ approach makes more sense. For instance, suppose John claims: “I am 80% certain 

that I will win the scholarship”. In ‘degree of belief’ context John has the same degree of 

confidence in his winning the scholarship as he would in the proposition that when a ball is 

picked up at random form an urn containing 8 white and 2 black balls, the ball will turn out to 

be white. It is impractical to imagine that if the scholarship contest is repeated say 1000 

times, John will be successful in 800 contests and will be unsuccessful in the remaining 200 

contests. This gives rise to our purpose of study on the comparison between the Maximum 

Likelihood Estimators (MLE) and Bayesian Estimators of three standard theoretical 

distributions. Through this dissertation we have tried to derive the exact form of estimators of 

the parameters involved and compared them with varying sample size. 

Unlike classical methodology, in Bayesian framework the parameter is justifiably regarded as 

a random variable and the data once obtained is given or fixed.  It combines with prior 

information with information contained in the data collected to formulate the posterior 

distribution which in turn provides a measure of the probability to events hereafter.
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2.Methodology:

                          Here for the comparison of Maximum Likelihood and Bayesian estimation of 

parameters we have considered three theoretical probability distributions namely: Poisson 

distribution, Binomial distribution, Normal distribution. 

 At the foremost we draw a random sample of size, say n, from a particular theoretical 

probability distribution (aforementioned). 

 We are given with a statistical model i.e. a family of distributions , 

where θ denotes the parameter for the model and Ω being the parameter space. Now utilizing 

the given random sample we construct the likelihood function . Using the method 

of maximum likelihood we find the values of the model parameter, θ that maximizes the 

likelihood function i.e. we select the parameter values that make the data most probable. 

 Turning over to Bayesian framework θ is a random variable and the data  is given or 

fixed. To start with we have the pre-sample of prior information about θ summarized by the 

prior distribution g(θ). Then we proceed to collect the data  and the corresponding 

likelihood function  gives us the additional information about θ.  

Using Bayes’ theorem we combine the prior information and the information contained in the 

sample and calculate our new or revised degree of belief about θ given by the posterior 

distribution- 

{f ( . ; θ ) |θ ∈ Ω}

L(θ; x⏟)

x⏟

x⏟

L(θ | x⏟ )
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where . 

The prior information is subjective and is based on person’s own experience and judgement. 

Here, we have considered two approaches- 

• Jeffreys’ Invariant Prior: 

                                        When we are in a state of ignorance about the parameter we 

need to choose a prior known as the Non-informative or vague prior. Following the 

rules (1) as suggested by Jeffrey, we have constructed the prior in the following 

discussion. 

(1): Reference Book [B1, page 21] (Bibliography). 

• Natural Conjugate Prior: 

                                             The family of prior distributions g(θ),  is called natural 

conjugate prior (NCP) if the corresponding posterior distribution belongs to the same 

family as g(θ). Following DeGroot (2) we construct the NCP g(θ) observing the 

corresponding likelihood function of the given distribution. 

   (2): Reference Book [B1, page 27] (Bibliography). 

∏(θ x⏟) =

g(θ )f( x⏟ θ)
h( x⏟)

= cg(θ )f ( x⏟
|θ )

 c−1 = ∫ ∏ (θ | x⏟ )dθ

θϵΩ
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3.Results and Discussion:

3.1 Poisson Distribution:

 

Here  is our parameter of interest. 

▪ Fisher Maximum Likelihood Estimator: 

Let  be a random sample from f(x).Thus the likelihood function- 

 

f(x) = e−
x

x!
    ;   x = 0,1, 2,3, …

λ

X1, X2, X3, …, Xn

L(λ) =
n

∏
i=1

f(xi) = e−nλ λ∑n
i=1 xi

∏n
i=1 (xi!)
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Or,  

Partially deriving with respect to   - 

 

Now, equating to zero - 

 

Therefore, sample mean is the MLE of λ.  

▪ Bayesian Estimation: 

• Consider Jeffrey’s Prior - 

   

Now, 

  

Here,   

 

Partially deriving with respect to  - 

 

Again, partially deriving with respect to  - 

lnL(λ) = − nλ +
n

∑
i=1

xiln(λ) − ln(
n

∏
i=1

xi!)

λ

∂lnL(λ)
∂λ

= − n +
∑ xi

λ

λ̂ =
1
n

n

∑
i=1

xi = x

g(λ) ∝ I(λ)
1
2

I(λ) = − E[ ∂2lnf(x)
∂λ2 ]

f(x) = {e−λ λx

x! ; x = 0,1, 2,…
0; otherwise

lnf(x) = − λ + xlnλ − ln(x!)

λ

∂lnf(x)
∂λ

= − 1 +
x
λ

λ
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∴

∴

Now we know the posterior distribution: 

  

 

                          , where K is the normalizing 

constant. 

We obtain, 

      

Let, 

∂2lnf(x)
∂λ2

= −
x
λ2

E[ ∂2lnf(x)
∂λ2 ] = −

E(x)
λ2

= −
1
λ

I(λ) =
1
λ

g(λ) ∝
1

λ

∏ (λ | x⏟) ∝ g(λ)L(λ | x⏟)

∏ (λ | x⏟) ∝ e−nλ λ∑n
i=1 xi+ 1

2 −1

∏n
i=1 (xi!)

∏(λ x⏟) = Ke−nλλ(∑n
i=1 xi+ 1

2 )−1

K =
n∑n

i=1 xi+ 1
2

⌈(∑n
i=1 xi + 1

2 )

n

∑
i=1

xi = S

 7



∴        i.e. Gamma

∴    

(1) Result: It is very clear that with increase in sample size  tends to  i.e. both 

MLE and the Bayesian estimator of λ is the sample mean for considerably large 

sample size. 

Though is unbiased it is a consistent estimator for λ. 

The plot clearly depicts the above result: 

∏ (λ | x⏟) =
nS+ 1

2

⌈(S + 1
2 )

e−nλλS+ 1
2 −1 (n,  S +

1
2

)

λ* = E(λ x⏟) =
S + 1

2

n
= x̄ +

1
2n

λ* x̄

λ*
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• Consider Natural Conjugate Prior: 

 …(1) 

The posterior distribution is – 

 

Or,   

g(λ a, b) =
ba

⌈a
λa−1e−bλ        ; a, b > 0

∏(λ x⏟) ∝ g(λ a, b)L(λ x⏟)

∏(λ x⏟) ∝
ba

⌈a
λa−1e−bλe−nλ λ∑n

i=1 xi

∏n
i=1 xi!
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Let  ,

        , where K is the normalizing constant.

We obtain 

∴       i.e. Gamma  

∴

The parameters (a, b) are usually unknown. We obtain the marginal distribution of X and 

estimate (a, b) by the method of moments. Equation (1) represents a Gamma prior. The joint 

distribution of (X, a, b) is given by- 

 

Integrating over λ - 

 

 

We know, 

n

∑
i=1

xi = S

∏(λ x⏟) = Ke−λ(n+b)λS+a−1

K =
(n + b)(S+a)

⌈(S + a)

∏(λ x⏟) =
(n + b)(S+a)

⌈(S + a)
e−λ(n+b)λS+a−1  (n + b,  S + a)

λ* = E(λ x⏟) =
S + a
n + b

h(x, a, b) =
ba

⌈(a)
e−(b+1)λ λx+a−1

x!

h(x, a, b) =
1
x!

ba

⌈(a)

∞

∫
0

e−(b+1)λλx+a−1dλ

=
ba

⌈(a)
1
x!

⌈(x + a)
(b + 1)x+a
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Now,   

      

 

, where  

             

Equating to the sample mean we have the estimating equation- 

   

Substituting in (2) we have –

 

(2) Result: Considering Natural Conjugate Prior, the Bayesian estimator  is same 

as the MLE . Hence,  may be looked upon as an improvement over MLE as 

along with possessing the properties of the MLE, it can be updated for a revised 

degree of belief about λ as successive samples are drawn hereafter.                                            

3.2 Binomial Distribution:

∑
x

h(x a, b) = 1

∑
x

ba

⌈(a)
1
x!

⌈(x + a)
(b + 1)x+a = 1

E(X) =
∞

∑
x=0

xh(x a, b) =
∞

∑
x=1

ba

⌈(a)
1

(x − 1)!
⌈(x + a)

(b + 1)x+a =
∞

∑
x=1

ba

⌈(a)
1

(x − 1)!
⌈((x − 1) + (a + 1))

(b + 1)(x−1)+(a+1)

=
a
b

∞

∑
x=1

ba+1

⌈(a + 1)
1

(x − 1)!
⌈((x − 1) + (a + 1)
(b + 1)(x−1)+(a+1) =

a
b

∞

∑
y=0

ba′ 

⌈(a′ )
1

(y)!
⌈(y + a′ )

(b + 1)y + a′ 

a′ = a + 1 ,  y = x − 1.

=
a
b

x̄ =
a
b

λ* =
nx̄ + bx̄

n + b
= x̄

λ*

x̄ λ*
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    ; x=0,1, 2,...,n  ……(1) 

Here p is our parameter of interest. 

▪ Fisher Maximum Likelihood Estimator: 

Let  be a random sample from f(x).Thus the likelihood function  

  

Or,   

Partially deriving with respect to p -  

   

Equating to zero we get- 

 

Thus we obtain the MLE of p as the ratio of the sample mean to the population size. Further, 

let   

∴  

f (x) = (n
x)px(1 − p)n−x

X1, X2, X3, …, XN

L(p) =
N

∏
i=1 (n

xi)pxi(1 − p)n−xi = p∑N
i=1 xi(1 − p)Nn−∑N

i=1 xi
N

∏
i=1 (n

xi)

lnL(p) =
N

∑
i=1

ln(n
xi) +

N

∑
i=1

xiln(p) + (Nn −
N

∑
i=1

xi)ln(1 − p))

∂lnL(p)
∂p

=
∑N

i=1 xi

p
−

Nn − ∑N
i=1 xi

1 − p

p̂ =
1

Nn

N

∑
i=1

xi =
x̄
n

N

∑
i=1

Xi = S

L(p) = pS(1 − p)Nn−S
N

∏
i=1 (n

xi)
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▪ Bayesian Estimation: 

• Consider Jeffrey’s Prior - 

  

Now,            

Here,  

             

Partially deriving with respect to p - 

  

 Again, partially deriving with respect to p - 

  

]

 

 

g(p) ∝ I(p)
1/2

I(p) = − E[
∂2ln f(p)

∂p2
]

lnf(p) = ln(n
x) + xln(p) + (n − x)ln(1 − p)

∂lnf (p)
∂p

= 0 +
x
p

−
n − x
1 − p

∂2ln f(p)
∂p2

= −
x
p2

−
n − x

(1 − p)2

∴ − E[
∂2ln f(p)

∂p2 ] = − E[ −
x
p

−
n − x

(1 − p)2

=
np
p2

−
n − np

(1 − p)2 = n[
1
p

+
1

1 − p
] =

n
p(1 − p)

∴ g(p) ∝
1

p(1 − p)
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Or,  

∴   

, where  

The posterior distribution of p is given by: 

 

where  

The Bayes’ estimator – 

 

g(p) ∝ p
1
2 −1(1 − p)

1
2 −1

g(p) = Kp
1
2 −1(1 − p)

1
2 −1

K = B( 1
2

,
1
2 )

∏ (p |x) = cg(p)L(p) = cpS+ 1
2 −1(1 − p)Nn−S+ 1

2 −1

c−1 = ∫
1

0
∏(p x)dp = B(S +

1
2

, Nn +
1
2

− S)

p* = E[p x⏟] =
S + 1

2

Nn + 1
2 + 1

2

=
S + 1

2

Nn + 1
=

N x̄ + 1
2

Nn + 1
=

N(x̄ + 1
2N )

N(n + 1
N )

=
(x̄ + 1

2N )

(n + 1
N )
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(3.2.1) Result: For considerably large sample size tends to  which is same as the MLE. 

The following plot-

 

• Consider the conjugate prior distribution of p- 

    ; a, b > 0 ……… (2) 

The posterior distribution of p is given by- 

  , where 

 

p*
x̄
n

g(p) ∝ pa−1(1 − p)b−1

∏(p x) = KpS+a−1(1 − p)Nn+b−S−1

K−1 = ∫
1

0
∏(p x)dp = B(S + a,  Nn + b − S)

 15



Restoring the normalizing constant, the posterior distribution of p is given by- 

        ;0<p<1 

Hence the Bayes estimator is: 

      … (2.1) 

The parameters (a, b) are usually unknown. One may obtain the marginal distribution of X 

and estimate (a, b) by the method of moments. (2) represents a Beta-prior. Restoring the 

normalizing constant and combining with (1) we get- 

  

Or,  

 

........(3) 

Then it follows: 

  

 

∏(p x) =
1

B(S + a,  Nn + b − S)
pS+a−1(1 − p)Nn+b−S−1

p* = E(p x⏟) =
B(S + a − 1,Nn + b − S)

B(S + a, Nn + b − a)
=

S + a
Nn + a + b

h(x, p) =
(n

x)
B(a, b)

px+a−1(1 − p)n−x+b−1

h(x p) =
(n

x)
B(a, b)

B(x + a, N − x + b) =
(n

x)(x + a − 1)!(n − x + b − 1)!(a + b − 1)!

(a − 1)!(b − 1)!(n + a + b − 1)!

=
(x + a − 1

a − 1 )(n − x + b − 1
b − 1 )

(n + a + b − 1
a + b − 1 )

K = (n + a + b − 1
a + b − 1 ) =

n

∑
x=0

(x + a − 1
a − 1 )(n − x + b − 1

b − 1 ) =
(a + x − 1)!(n − x + b − 1)!

(a − 1)!(b − 1)!x!(n − x)!
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∴

 

 

and comparing with (3) we have- 

                        

…….(4) 

Equating (4) to the sample mean  we have the estimating equation: 

 

Substituting in (2.1)  

 

(3.2.2) Result: Independent of the parameters (a, b) of the Beta prior (2), Bayes estimator of 

p identifies itself with the MLE of p.   

3.3 Normal Distribution:

Pdf of X:                  -                                                         

Here µ and σ are our parameters of interest. 

E(X ) =
n

∑
x=0

xh(x p) = K
n

∑
x=1

(a + x − 1)!(b + n − x − 1)!

(a − 1)!(b − 1)!(x − 1)!(n − x)!
= Ka

n−1

∑
y=0

(a + y)!(b + n − y − 2)!

a!(b − 1)!y!(n − y − 1)!

= Ka
m

∑
y=0

(a + 1 + y − 1)!(b + m − y − 1)!

(a + 1 − 1)!(b − 1)!(m − y)!y!

E(X ) = Ka(m + a + 1 + b − 1
a + 1 + b − 1 ) = Ka(n + a + b − 1

a + b ) =
na

a + b

x̄

x̄ =
na

a + b

p* =
N x̄ + a
Nn + na

x̄

=
x̄(N + a

x̄ )
n(N + a

x̄ )
=

x̄
n

f(x μ, σ) =
1

σ 2π
e− 1

2 ( x − μ
σ )2

∞ < x, μ < ∞ σ > 0
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▪ Fisher Maximum Likelihood Estimator: 

 

Then- 

  

Partially deriving with respect to  - 

  

Equating to zero we have-    

Again, partially deriving with respect to  - 

 

Equating to zero and recalling that  we get- 

 

▪ Bayesian Estimation: 

(i) σ known: Conjugate prior for µ 

We write the likelihood function as: 

L(μ, σ x⏟) ∝
1
σn

e− 1
2σ2 ∑n

i=1 (xi − μ)2

lnL(μ, σ2 x⏟) = −
n
2

(ln(2π) + ln(σ2) −
1

2σ2

n

∑
i=1

(xi − μ)2

μ

∂lnL(μ, σ2 | x⏟ )

∂μ
=

1
σ2

n

∑
i=1

(xi − μ) =
1
σ2

n(x̄ − μ)

μ̂ = x̄

σ2

∂lnL(μ, σ2 | x⏟ )

∂σ2
= −

n
2σ2

+
1

2σ22

n

∑
i=1

(xi − μ)
2

= −
n

2σ22 (σ2 −
1
n

n

∑
i=1

(xi − μ)
2

μ̂ = x̄

σ̂2 =
1
n

n

∑
i=1

(xi − x̄)2
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, where  

We know is sufficient for µ. Replacing  by m and  by  

 

Normalizing we get: 

  

Combining with the Likelihood function we have- 

 

 

 

, where  

L(μ, σ x⏟) =
1

(σ 2π)
n e− 1

2σ2 (∑n
i=1 (xi − x̄)2+n(x̄ − μ)2) =

1

(σ 2π)
n e− 1

2σ2 (A+n(x̄ − μ)2)

= e− n(x̄ − μ)
2σ2 (

1

(σ 2π)
n )e− A

2σ2

A =
n

∑
i=1

(xi − x̄)2 = e− n(x̄ − μ)
2σ2 (

1

(σ 2π)
n )e− A

2σ2

x̄  x̄
σ2

n
δ2 .

g(μ) ∝ e− (μ − m)2

2δ2 ∝ N(m, δ2)

g(μ) =
1

δ 2π
e− 1

2 ( μ − m
δ )

2

π(μ x⏟) ∝ e
− 1

2 [ (x̄ − μ)2

σ2
n

+ (μ − m)2

δ2 ]

∝ e
− 1

2 [μ2{ 1
δ2 + n

σ2 } − 2μ{ m
δ2 + n x̄

σ2 } + { n x̄2
σ2 + m2

δ2 }] ∝ e− 1
2 [Bμ2 − 2μC + D]

∝ e− B
2 (μ − C

B )2

B =
n
σ2

+
1
δ2

 19



  

               

, where   

Then the Bayesian estimate of µ is- 

           

, where  

And we also obtain – 

 

(3.3.1) Result: As n→  , the maximum likelihood estimator (MLE) of µ. Further, 

as  which implies that as our prior information about µ becomes vaguer and 

vaguer, the posterior mean tends more to the sample mean  independent of the sample 

size. 

(ii) σ known: Jeffreys’ prior for µ: 

Suppose we are in a state of complete ignorance about µ and we represent our prior ignorance 

by Jeffreys’ prior. In such a case, the likelihood and posterior distribution must be the same 

and hence we have- 

              C =
m
δ2

+
n x̄
σ2

D =
n x̄2

σ2
+

m2

δ2

π(μ x⏟) = Ke− B
2 (μ − C

B )
2

   K = B /2π

μ* = E(μ x⏟) =
C
B

=
m
δ2 + nx̄

σ2

n
σ2 + 1

δ2

=
mσ2 + n x̄δ2

nδ2 + σ2
=

n x̄ + mσ2

δ2

σ2

δ2 + n
=

n x̄ + λm
n + λ

λ =
σ2

δ2

σ2* =
1
B

=
σ2δ2

σ2 + nδ2
=

σ2

n + λ

∞ μ* →  x̄

σ2* → ∞

μ* x̄
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Restoring the normalizing constant, we have- 

 

which implies the posterior distribution of µ is and  

 

(3.3.2) Result: Clearly in the above case as the likelihood and the posterior distribution are 

same. Thus we have obtained the same estimator i.e. the sample mean for µ. 

(iii) Conjugate prior(µ and σ unknown): 

The prior is hierarchical.  

First, we assign the following prior to the mean, conditional on the variance: 

 

π(μ x⏟) = K e− n
2σ2 (x̄ − μ)2

                                        K = ∫
∞

−∞
e− n

2σ2 (x̄ − μ)2
dμ = √(

2π
n

)σ

π(μ x⏟) =
1
2πσ

n

e− n
2σ2 (x̄ − μ)2

,    − ∞ < μ < ∞

N(x̄,
σ2

n ) 

μ = E(μ x⏟) = x̄

p(μ σ2) =
1

2πσ2

κ0

e
−( 1

2σ2
κ0

(μ0 − μ)2)

 21



that is, µ has a standard normal distribution with mean  and variance . 

Note that the variance of the parameter µ  is assumed to be proportional to the unknown 

variance  of the data points. The constant of proportionality  determines how tight the 

prior is, that is, how probable we deem that µ  is very close to the prior mean . 

Then, we assign the following prior to the variance: 

 

 

that is,  has an inverse-chi square distribution with parameters   and   

We can think of  as our best guess of the precision of the data generating distribution.  

is the parameter that we use to express our degree of confidence in our guess about the 

precision. The greater , the tighter our prior about  is, and the more we believe that  

is close to . 

 Then the joint prior distribution is- 

μ0
σ2

κ0

σ2 κ0

μ0

p(σ2) =
(γ0σ02)

γ0
2

2
γ0
2 ⌈ γ0

2

(
1
σ2

)
γ0
2 +1

e−( γ0σ02
2σ2 )

γ0,  σ02

1
σ02

γ0

γ0
1
σ2

1
σ2

1
σ02
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, where  

Now observe that – 

  

: Prior Sum of Squares 

The posterior distribution is then obtained as: 

                      

 

 

where- 

   

 Since  then grouping the terms within the exponential: 

Let  

g(μ, σ2) = NIχ2(μ0, κ0, γ0, σ02) = N(μ μ0,
σ2

κ0 )χ−2(σ2 γ0, σ0)

= K−1(
1
σ

)(
1
σ2

)
γ0
2 +1

e−( 1
2σ2 )(γ0σ02+κ0(μ0 − μ)2)

K =
2π
κ0

(
γ0

2
)

1

( γ0σ02

2 )
γ0
2

Q0(μ) = S0 + κ0(μ0 − μ)2 = κ0μ2 − 2(κ0μ0)μ + (κ0μ02 + S0)

S0 = γ0σ02

π(μ, σ2 x⏟) = N(μ μ0,
σ2

κ0 )Iχ2(σ2 γ0, σ02)L(μ, σ2 x⏟)

     ∝ {( 1
σ )( 1

σ2 )
γ0
2 +1

e− 1
2σ2 [γ0σ02 + κ0(μ0 − μ)2]}{

1
σ2

n
2
e− 1

2σ2 [ns2 + n(x̄ − μ)2]}

= NIχ2(μn, κn, γn, σn2)

γn = γ0 + n

S0
2 = γ0σ02

Sn
2 = γnσn2
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Comparing with  

   

  

  

  

Rearranging the terms we have- 

   

∴Posterior Sum of squares =  combines prior sum of squares , the 

sample sum of squares  and a term due to uncertainty in the mean. 

  

  

  

  

The posterior mean i.e. the Bayesian estimate is obtained as: 

  

S0 + κ0(μ0 − μ)2 + ns2 + n(x̄ − μ)2 = (S0 + κ0μ02 + ns2 + n x̄2) + μ2(n + κ0) −                                                                                             2(κ0μ0 + n x̄)μ

Q0(u)−

κn = κ0 + n

κnμn = κ0μ0 + n x̄

Sn + κnμn2 = S0 + κ0μ02 + ns2 + n x̄2

∴ Sn = S0 + κ0μ02 + ns2 + n x̄2 − κnμn2

Sn = S0 + ns2 + κ0μ02 + n x̄2 − (κ0μ0 + n x̄)2

(κ0 + n)2 = S0 + ns2 +
nκ0

n + κ0
(μ0 − x̄)2

Sn = γnσn2 S0 = γ0σ02

ns2

∴ μn =
κ0μ0 + n x̄

κn

κn = κ0 + n

γn = γ0 + n

σn2 =
1
γn

[γ0σ02 +
n

∑
i=1

(xi − x̄)2 +
nκ0

n + κ0
(μ0 − x̄)2]

μ* = E(μ x⏟) = μn =
1

κ0 + n
[n( 1

n

n

∑
i=1

xi) + κ0μ0]
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(3.3.3) Result: The posterior mean  is the weighted average of two information: 

1. The sample mean  of the observed data;  

2. The prior mean .  

The greater the precision of one, the higher it’s weight is. Both the prior and the sample mean 

convey some information about . These two are combined (linearly), but more weight is 

given to the signal that has higher precision (smaller variance). 

The weight given to the sample mean increases with n, while the weight given to the prior 

mean does not. As a consequence, when the sample size  becomes large, more and more 

weight is given to the sample mean. In the limit, all weight is given to the information coming 

from the sample and no weight is given to the prior. 

σ2* = E(σ2 x⏟) =
γnσn2

γn − 1

μn

x̄

μ0

μn
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(iv) Jeffreys’ prior(µ and σ unknown): 

 

Then the joint posterior distribution of  is – 

   …….(1) 

 

g(μ, σ) ∝
1
σc

        ; c > 0

(μ, σ)

∏(μ, σ x⏟) = K
1

σn+c
e− 1

2σ2 ∑n
i=1 (xi − μ)2

= K
1

σn+c
e− 1

2σ2 {A + n(x̄ − μ)2}
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Marginal posterior of µ: 

∴Restoring K in (1) and obtaining the marginal distribution of  we have- 

  

∴ K
∞

∫
0

∞

∫
−∞

1
σn+c

e− 1
2σ2 {A+n(x̄ − μ)2}dμ dσ = 1

K∫
∞

0

1
σn+c

e− A
2σ2 ∫

∞

−∞
e− 1

2σ2 n(x̄ − μ)2

dμ dσ = 1

K∫
∞

0

e− A
2σ2

σn+c

√(2π)σ

√n
dσ = 1

K
2π

n ∫
∞

0

e− A
2σ2

σn+c−1
dσ = 1

K
π
2n ⌈ n + c − 2

2 ( 2
A )

n + c − 2
2

= 1

K−1 =
π
2n ⌈ n + c − 2

2 ( 2
A )

n + c − 2
2

μ

∏(μ x⏟) =
2n
π ( A

2 )
n + c − 2

2 1

⌈ n + c − 2
2

1
2 ∫

∞

0

e− 1
2σ2 {A + n(x̄ − μ)2}
σ2

n + c − 1
2 +1
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Now,  

=
2n
π ( A

2 )
n + c − 2

2 ⌈ n + c − 1
2

⌈ n + c − 2
2

( 1
2 ){

2

A + n(x̄ − μ)2 }
n + c − 1

2

=
2n
π ( A

2 )
n + c − 2

2 ⌈ n + c − 1
2

⌈ n + c − 2
2

( 1
2 ) 2

1 +
n(x̄ − μ)2

A

n + c − 1
2

1
A

n + c − 1
2

=
n
π ( A

2 )
n + c − 2

2 ⌈ n + c − 1
2

⌈ n + c − 2
2

1

1 +
n(x̄ − μ)2

A

n + c − 1
2

1
A

1
2

=
n
A ( A

2 )
n + c − 2

2 ⌈ n + c − 1
2

⌈ 1
2 ⌈ n + c − 2

2

1

1 +
n(x̄ − μ)2

A

n + c − 1
2

=
n
A

1

B( 1
2 , n + c − 2

2 )

1

1 +
n(x̄ − μ)2

A

n + c − 1
2
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Let   

  

  

  

     [t is distributed as student’s t with (n+c-2) degrees 

of freedom.] 

(3.3.4) Result: Bayes estimator of µ is same as MLE of µ (independent of c). 

Marginal Posterior of : 

μ* = E(μ x⏟) =
n
A

1

B( 1
2 , n + c − 2

2 ) ∫
∞

−∞

μ

(1 +
n(x̄ − μ)2

A )
n + c − 1

2
dμ

n(x̄ − μ)
A

=
t

n + c − 2

∴ dμ = −
A

n(n + c − 2)
dt

∴ μ* =
1

n + c − 2

1

B( 1
2 , n + c − 2

2 ) ∫
∞

−∞

x̄ − A
n(n + c − 2) t

(1 + t2

n + c − 2 )
(n + c − 2) + 1

2

=
1

n + c − 2

1

B( 1
2 , n + c − 2

2 )
x̄∫

∞

−∞

dt

(1 + t2

n + c − 2 )
n + c − 2 + 1

2
−

A
n(n + c − 2)

E(t)

= x̄ −
A

n(n + c − 2)
E(t) = x̄

σ2
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...                                                                                                                        

  

 

 

 

(3.3.5) Result: The variance estimator would be same as the MLE in case c=4. Also if c=3 

the above is same as the Uniformly Minimum Variance Unbiased Estimator of  

6. Concluding Remarks:

                                    The present dissertation explores Maximum Likelihood and Bayesian 

estimation of parameters in Poisson, Binomial and Normal distribution under Natural 

∏(σ2 x⏟) = ∫
∞

−∞
∏(μ, σ x⏟)dμ = K

π
2n

e− A
2σ2

σ2
n + c

2
=

A
2

n + c − 2
2

⌈ n + c − 2
2

e−( A
2σ2 )

σ2
n + c

2

0 < σ < ∞

∴ σ*2 = E(σ2 x⏟) =
A
2

n + c − 2
2

⌈ n + c − 2
2

∫
∞

0

σ2e− A
2σ2

σ2
n + c

2
dσ2 =

A
2

n + c − 2
2

⌈ n + c − 2
2

∫
∞

0

1
σ2

n + c − 2
2

e− A
2σ2 dσ2

=
A
2

n + c − 2
2

⌈ n + c − 2
2

∫
∞

0

1

σ2
n + c − 4

2 +1
e− A

2σ2 dσ2

=
A
2

n + c − 2
2

⌈ n + c − 2
2

⌈ n + c − 4
2

A
2

n + c − 4
2

=
A
2

( n + c − 4
2 − 1)!

( n + c − 2
2 − 1)!

=
A
2

2
n + c − 4

=
A

n + c − 4

=
1

n + c − 4

n

∑
i=1

(xi − x̄)2

σ2 .
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Conjugate Prior and Jeffreys’ Invariant Prior and demonstrates that the Bayes estimator 

performs better than the ML estimator under certain cases. 

 As the sample size increases both the approaches tend to yield a similar kind of estimator of 

the parameter of interest. 

In certain situations, Bayesian estimators outperform ML estimates as the former approach 

takes into consideration the pre-sample or prior information based on a person’s own 

experience and judgement. 

The Bayesian estimators although biased (in some cases) are consistent. 

Given the sample and the corresponding likelihood function, Bayes’ estimator is unique 

unlike MLE(s) sometimes obtained. 

When the underlying distribution depends on, say r number of parameters 

 and we are interested only in a subset 

, estimation of   may be based upon the marginal posterior of  

obtained by integrating out  from the posterior of . 

θ⏟ = (θ1, θ2, …, θk, θk+1, …, θr)

∝⏟ = (θ1, θ2, …, θk) ∝⏟ ∝⏟

β
⏟

= (θk+1, …, θr) θ⏟
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7.Limitations:

The most important limitation is the need for a prior probability distribution over the model 

parameters. Any domain information that can help in choosing the prior can have a big 

influence on the accuracy of the posterior. Estimation comes from the different resource 

(dataset), may add noise to model. When no reliable information is present, typically a 

uniform prior or the uninformed Jeffreys’ prior is used.

A second limitation is that the posterior distribution often does not have a neat, closed form. 

Only when a conjugate prior exists for the distribution we avoid this problem (e.g. a normal-

inverse chi square distribution for a normally-distributed variable). When such a prior does 

not exist, techniques such as sampling or Laplace estimators are often used to obtain a 

closed-form distribution close to the posterior 
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8.Scope for further study:

                                         We have only considered 3 specific theoretical probability 

distributions and takes into account two approaches to obtain prior distributions. There is 

further scope for various other approaches to prior distributions which may yield a better 

explanation for the purpose of comparison in the above discussed cases.  

Moreover, the Bayesian approach can be implemented over realistic situations in our daily 

life. Here, we have compared Bayesian estimators and Maximum Likelihood Estimators over 

varying sample size, which can be further extended over various other factors and studied.  
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